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Introduction

——

\, 7 A

The past five years of this project have been devoted ccé@cvn;cgnenc é;:fc*

of qualitative theories of the fupdamental electronic structure of purc and.

impure sendiconductors.) The bhasic theoretical tools and alse conclusions

relating to chiefly photeoemission type experiments and to some cxtent

spectroscopy of purce II-VI and TII-V compounds are presented, in Chapters L

and 2 of this reporte— Basic complete work relating to adsorbates and their
spectra are reporccd‘in Chapter 3. Scveral related studies are being com-

pleted at this point aZd several artiecles reloating to these studies arxe

jecacion.

baing prepared for puﬁ
-

o i




CLa ter 1. A
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{
£#~* ~) This investigation has the purpose of parforming

self-consistent energy tand calculations on some of the II-VI
coxnounds, such as cadmium sulfide, zinc oxide, and zinc sulfide,

Therc are muny vdractical and theoretical rcasons

fcx interest in these paterials,
- These materials have applications as phosphors (ZnS

and CdS), as infrered detectors (Zn5), in phutovoltaic cells (Ca5-

r1
gu & or Ci5-CdTe heterojfunctions), in batteries (ZnQ), as FETs
2

{C&S), in hetzsrojunction lasers (CidS), and even as acoustic

amolifiers (Cds). //1:09 )““"

i
-

They are of considerable theoretical interest as
i2ll, as examples of wide rand zayp sollds, intermecdiatc bebscen
the covalent ITI-V semicenductors and the more ictiic I-VIT
irsulators. Trey serve as o test of calculatiornal methods previously
used on the lighter III-V compounds and cothier compounds simpler

then these II-VI compounds.
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In particulnrJ the cccupled d-lavels, vhleca lle¢ in snergy near the
top of the valence levels, complicate the picture. The positions of
the d-bands have not been correctly precdicted in pravious ad initio
calculations, and in fact sone methods fail qualitatively by not
obtaining the proper ordering of the valence s,p and d levels,

The II-VI compounds have also teen of theoretical interest
as exclitonlec systems. High densities of such electron-hole complexes
have bLeen produced and observed in CdS. The electron-hole liguid has
been observed and studled in CdS as iwell,

In addition, some very interesting uazsnetic properties
in CuCl end CdS have recently been observed., This is the ackground
of these experimental studies, Anomalous dilamagnetism has been
obsexved in CuCl under rapid pressure and temperature cycling. In
some samples, up to 50% of the magnetic flux is excluded., This occurs
at high temperatures (150 k!) and cannot be explained »y ordinary
dismagnetisa, The only currently known phenomenon that can explain

this is superconductivity,




It's clear that this would have to be supcrconduvctivity
of different origin. Acoustic phonons, the known mechanism,
are too low in energy to bind electrons at such hignh temneratures,
Models using some other form of interaction to pair electrons
seem to be necessary, Some form of excitonic binding is proposed
in rany of these models. One of the most well-kncwn such models,
the Allender-Bray-Bardeen model, requires a metal and a
seniconductor to exist in very close proximity. Since CuCl can
disproportionate via the reaction 2CuCl Cu + Cuclz. this mocel
has eppealed to many., Howver, cadmium sulfide, which has been
observed to have only one valence state and 1s nct believed to
disproportionate, hes shown similar anomalous dlaxagnetism, The
law of rarsimony 1s, therefore, against the metal-scmiconductor
sandwich ldea., Also, in both CuCl and CdS, impurities clear}y
rlay a rajor role, Sufficliently clean samples display no
interesting behaviour at all., And to make life even more
interesting, cadnium sulgide also becomes a ferromagnet under a

high (40 xllozauss) applied fiecld.




Another iecdel, proposed by tishop and Overhauser { ), involves
the interaction mediated by the optical phonons. This rechanism
has deep attractive potential wells, about 10 mev in depth for

a spacling of 250 angstroms. This suggests the possibllity of
bound stotes, and the pairing is considerably stronger, around

a factor of ten, than the palring from acoustic phonons in

the tyopical Cooper pair in the highest tempereture superconductors
known, at apvroximately 20 deyrees Kelvin, This ldea 1is even more
intriguing in the lizht of the fact that both CdS and CuCl are
strongly volar conpounds, This suggest that these phenomena

vould rot be seen in the less polar III-V compounds and in

elemental semiconductors such as Ge and Si. They've been

investigated most thoroughly and indecd, such effects have not

bheen observed.




Chapter Cne

éhe calculations discussed here are based on
Hartree-Focx theory, the most common approximation to
the exact non-relativistic theory of a many-electron systen,
I'11 discuss the theory and its applications to crystalline
solids. The specialization of Eartrece~Fock theory used
in these calculations, the nethod of local orbitals,
descrves and gets a chapter of its own.

The original problem is finding exact solutlons
to the Schrodinger equtation for a many-electron system,
This 1s ilmpossible, if the universe is as small as we think
it is, Consider the wavefunctlon, which 1s a 3N dimensional
function if there are N electrons., Dividing each axis into,
say, 100 units, in order to numerically intesrgte and

6N

differentiate, we need to record 10 entries, The same

problem arises if we try to descrlbe the wavefunction by




6
sets of orthogonnl functleons., 30 Ls just too bLipg & number.

Quantum mechanics 15 agalanst us. The upper limit for the

2
rate of information flot in a computer of mass ¥ is ife /h
(h = Planck's constant, ¢ = speed of light), in bits per
second. It's not hard to see that macroscoplc physical
systams cannot be exactly simulated by digital computers.,
1 emphosize the word digital, since the slectron is an
excelient analog of itself,

Such a digital simulation would be useless even
if 4t counlé be done., £s suggested, the real solid simulates
iteeldlfl rexrfectly. The geal of physics is to explain some
set of cccurrences in terms of a few, relatively simple
ideas, recther then making o model isomorphlc with the universe
and Just as confusing.

We begin to clear away some complications by
using the EBorn-Oppenheimer arproxirmation, This neglects
any relationshlip between the motion of the electrors and
the motion of the nuclel. “nls a valid simnlification, since

the nuclel range from 10 <¢o 10 times heavier than an electron.




We can cxpress the N-&lectron wayefunction

as a function of the eiectronic coordinates alone:

¥ = Y (x LX) (1.1)
N N ‘)‘xﬁ) ' N
Here contains the position and spin coordinates of the
ith electron, We write the Schrodinger equation for this
wavefunction:
¥ (. . S ‘e 1.2

H N(/.an x,) ITV}J‘:/{X'*'XM ) (1.2)

Here, H is the non-relativistic Hamlltonian expressed in
2

stomic units, In this system of units, =1, e =2, and
the mass of the elecltron is one-half. The unit of distance
is onc bohr (.52G angstroms) and the unit of cnergy is the
rydberg (13.6 ev),

"“_f . Ve (1'3)

and i

I
A~ A.';
H=-Y Lg* -7 I
" }j""f T f'IZJ %‘% IR —R.] (1.4)
¥ o
/i.+~ =2 ) Z.LZ -
Ii I /R;-ﬁ)

g 1s indcpendent of the electron coordinstes, and has been
n

assuned to be a constant, as per the Zorn-Oprenheimer

aprroximation,




The upper case characters relexr to nuclear
properiies: Z is the atoalc number, R is the nuclecar position
( usually assumed to te fixed, like Fimlico) and M is the
nuclenr rass. The lower casc characters describe progperties
of the alectrons, x;jis the coordinate of the ith elecf}on.

The atomic.numbers ol the atoms under consideratlon
ere rclatively low, &nd since in any event it is the valence
electrons that are of prirary interest, the non-relativistic
nature cf the Hanliltonisn ray bte acceptable,

The fundamental approximation, now applicd, is the
independent paxrticle model. In truth, in the real solution,
the variables arc not serarable. lle must assume that they are,
or morc exectly th;tfthe true viavefunction can be well-
spproxirated by thiles model, The independent partlcle model 'says
that the electron is acted on by the average of the other
electrons., The X-electron wavefunction is expressed as a product

of cne-electron wavefunctions, or as a linear combination of

guch products. A simple example is the Hartree wavefunction:

ZI// aCACY, é’z () 6/;/'/*}(,) -3

7




Since electrons are fermions, this li-electron wovefunction must
be antisynmetric. Any intcrchange of two partlcles rust reverse
the sign of the wavefunction. The simplest way to antisynmetrize

is to use the detcrminnnt of a matrix whose elements arxe

spinorbitals. 9 (4\")(9()( ) ‘y ﬁ[«\')
9'1, {x') 63,(X9-) t 4y ‘

t

-

(V! )me et

-

(1.6)

! ’

G &e4,)

Not all such ‘F are spin eigenstates, but fortunately we have

here closed-sheil systems that can be expressed as single-

determinental wavefunctions,

For any arbitrary %; , we can find the expectation

valie of the iizmiltonian, It is a sum of one- end two- pariicle

integrals:
.g -
PIHLY Y= el y - 7<‘ 53, 41 P);J,m 2
J)"/
14,57 = 6.6) € &) (1.8)
P is & permutation operator, constructed so that
q . . .
FlAis>=/y a7 . The terms i=j are not a problem since the
2,5 37 7D

self-enerxy cancels the 'self-exchange’.

/0




I
Tr2 expectation valuc of the hamiltonian, (Y //7’/ /> can be

minimized by varying the spinoxrbitals. It has heen shown that

V) W]l 2 E (1.9)
AES

“here E i1s the cnergy of the exact ground state.

Ve vary the orbitals, but take care to keep them
orthogorzl, foxr conveniencse and without loss of generality. This
is dene ¢y using lagrange multipliers. The objective is to obtain
tha lowest upper bound to the exact non-relativistic energy.

Wwe define the functional

SIS Ay(€15=8,)  wao

/JJ"/

and require that the varlation of L = 0 for L = 1,2,...N .
Tnls ylelds a set of X coupled nonlinear

integrodiffzrentiol cquations known as the EHartrece-~Fock equations.

2 9 2, d . - f
{-\7 “EIZ’;—:ET +25¢2_‘(J’-'k';)3 9: (x) = 295‘)(1

4 AI
=/ -

J and X have the familiar Coulomd and exchange operator forms.

J J
Ju, & (x) = {j 1 )Z_ A% % &-(x) (1.12)

VF-3d
iyé‘(/w 62 ,/‘f/} 0m (1.13)

| F-57
Tnese equations may be written iu matrix form;

i(J Q(x)

(1.14)

/1
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F is the i!xN mactrix of the Fock operator, For closed
shells, it is KHerrmitian, so S may be dlagonalized by a unitary
transforration. Fortunately, the IX-VI compounds have closed
shells, We may write, F/D =E€./J> . (1.15)
Combining this expression with equation 1.7 gives the Hartree-Fock

ground state cnergy,

.
\j

N - . ‘ '
Rem Ol { & sCAIFLY L nae)

h

The £5are the single-particle energics, almost. Koopman's
P
theorem stetes that given a varlatiorally stationary state
formed from N simultaneous spinorbitzl (pseudo)eligenfunctions
of the Ik partlcle Fock operator r, the states V’ and 9' '
AFr n=/

formed by alterins the list of occupicd eigeafunciions of_? by
one entry, are stationary with respect to further variation of
that spinordbital whose occurancy has been altered. If we
neglect relaxation effects, f} is the entire change in sys%em
energy vinen an electron is added or removed,

In order to eguate the 4} S with single-particle

energles, ve must also ussume that relaxation effects are srall -

that the other occupied orbitals change only slightly when an




There arc such cranges, since the Fock oncrator 1S 4 functional
of all of 1ts own soluttons, and changing one of then nust
change £ll. The question 15, how nmuch? Theze rolaxation effects

will be discussed in a later section.

w




The Method of Local Orbitals

The method of local ortitals is a variational
technique in which solutions to the Hartree~rfock equaticns
ar; sought for a small subsystem of the system of interest,
with the caveat that all such solutions found must be contained
within the occupied ifock space of the original 3ystem, Sets of
such local orbltals, which are not orthogonal, can then
be assigned to esch subunit of the larger system using the
translationel invaxiance of the Pock-Dirac density ratrix,
thus spanning the occupied Hilbert space of that system,
A single noniterative rotation of the local orbitals within
this occupled space then yields the exact self-consistent
solutions for the original rock opecrator. .

Ir {9‘- })A.z /, 'l)-"h is the set of local
orbitals satisfying the Hartree-Fock equations for an n-clectron
system, then F 5}\' = ,z‘ %) 63 - (3.1)

"he Fock-Dirac density overator for the equation is

1




p = L6 S 6 (.2)
-1 ‘o) 7

S is the inverse of the overlap matrix S,

. *
5.=J 81 66 o (3.3)
a)', . }’
2 T
Rho (j») is a projection operator (f“’a“dj”f )
chosen such thatfez 5; for any orbital Q‘ln the occunied space
and)-,:l-ao for any orbital X in the virtual space, This means

that for any one-electron orerator J,, the projection of L

onto the rartree-Fock manifold will satisfy

tis

L ' o . . A

for eny occupied orbital 4 ' and}. Lj.f-:o for any virtual orbital J.

Another approach, rigorously developed by Gillbexrt ( ),

begins by introducing modifled Hartree-Fock equations of the form

. P,
F A e .
( + phye )5‘ é: € (3.5)
Abcve, A is an as yet unspecified iermitian operatoryr and rho
is the 'dlagonal' ( x equais x prime) form of the Fock=Dirac
density operator ( ). We see that rho is idempotent, Herrmitian,

and vrojects onto occupled Fock srace, Because of this last

property, it can be shown that the occupied eigenfunctions of

/




the modified Hartree-fFock equation lie entirely within the
occupied Fock space of the unmodified Hartree-Fock equations,
’_ ' \g 6“'»4 uu.,m'u/

So, F 6.,« N {0 atherwise (3.6)

There 1s no Koopman's theorem for this modified
equation, and so the t:.s cannot be interpreted as teing nearly
the particle encrgles, as they can in the regular Hartree-Fock
equations. The total energy of the subsystem still has significance
since a unitary transformation within occupied Fock space
lcaves the trace of Hermitian operators such as the Familtonian
invarient,

‘he properties of the é’.z will vary with the cholce
ol A, We are looking for functions that are localized on specific
lattice sites of a crystal. In order to decide which operato;
test fulfills such a purpose, we neced to consider the
mininization of a functional ,g[ 6,,6,, w 8,/ em
subject to the variational constralints (a"f - {d! =0,
J"/’“) ~J4) =0: {.4'{;)-:5:_‘}: =0 (3.7)

Here we can use the method of Lagrange multipliers. The integral




constraints of cquation 3.7 are tnken lnto account by the
rarancters /?/-. , and the constraints that invelve oxpllcit
functions of X in equation 3.7 are taken care of hy Lagronge
- ?
functions /L(x) and '.7‘(1).
A A

We obtain

J{,leaj ,x (<A 15 J{n}

X
-

)Z_IxN(AIJJ—(A.}) "2 7[..(‘) ():/i)*),{;) (3.8)
J L 16] “Z' 19,)"‘7( (9 Ty x) =0

SRV
¥ultiplying on the left by (I-J;). we see

(1-f) ’,.P') =0 §=1,2,.. .2 (3.9)

and (1-p)7, p= {(17)?& }f =0 for 2ll. ’}zk (3.10)
L r

nd ! 7 ) = - K A1

an SOJ;:JLaJUZk(X f(i Lo 7),,(< ) (3.11)

subpstituting cquation 3,11 into 3.3, we getl

f
i 6] = 2 4 15 (3.12)
f k )= kg
which may e rewritten as (/&) = f p, /7:) (3.1.3)
3f' 4

wnere & 3 (J 0 (3.14)

y :?’" ) )}’)

L unitary transformetion glves
Glwy = £ 1«5 (3.15)

Since we now know how to rinimize any chosen Hermitian




/&

runetiomlé . We can now get Lack to the true problem, lLet

A=G - F, 80 that [(-Fr-f/?},)G_]=o (3.16)

We ccn now minimizedi¢Jand solve equation 3.5 at the same time,
and so may pilclhdleto satisfy physical -easoning.

de choose A so that the solutions are localized on a site,
usually oy plicking A.to be sone potential well centered on the
site, The Fock operator can be separated into F , the atomic

s

Tock oyerator for the site s, and U , an external potential
s

operator for the site s, We usually pick the localizing potential,

£, to be U , The local orbitals equation is now
8

LR +V - 5U5l0, =£ 4. 13.17)

3 3 Sa 5,

This isn't an obvious inprovement over the original
Hfartree-Fock equation, but it allows a systematic approximation

that simplifies greatly the Hartree-Fock problem without inducing

»

undue error. The left side of equation 3.17 can be analyzed by

the crder of the intersite overlan. The Fock-Dirac density

‘(‘&fot/ Y4 ’.

cperator is p = E ’_f % , )/ — 97’ (3.18)
S /? A ).)/7' 7

with V tre interatomic overlap matrix,

-

J‘J i?"
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= [ &w @ ) ) o (3.19)
-4
hS dlscussed in Lowdin ( ).L’ _ay be cxpanded in a power
hat' } ))’
series in V _ 3 V = P30 T K PR (3.20)
Jn‘/‘\'),» S‘ 73 " 'f’. >(.v’}
7

Exranding the local orbitals 2quation and ditcarding second

order and greater in intersite overlap ( } glves

4 4 /
[FR FUp Y pl G, =& . O (3.21)

4
vhere p = T' L and
b ;, 2 6%;
U= T {-22 L »2}F j’ b !
3 ] //?"r/ JF =1

As sclf-consastency is npgroncncd. the last two terms of equation
3.21 tend to cancel, Therzfors, the Fock svace rotation changes
Bloch wavelfunctions into atenle-like vwavefunctions that are
elgenfunctions or' the atomic Fock wperator,
e procede to locallize a physically realistic

nunber of electrons on each site. In cedmium sulfide, we choose
to have L6 electrons on the cadmium site and 1.8 on the sul?ur.
approxirating an lonic charze distribution ( overiap and diffuse
valence orbltals permit ccmplete covalency if needed, hovever),

ile have achlieved several advantages. The problem is

computaticnally simplified, since the ecuation being iterated




0

does not have to roriruy the rull complexitles of the solid,

and since the local orbitals are recognizatly modified atomic
orbitals and aid in picturing chemical bhonding. This approach
has use as a beginniig in looking at amcrphous substances, which
have only a short-range order,

The locnl orbitals are calculated using the program
called LOPAS writtan by Kunz. A basis function expansion of
Slater orbitals (STOs) it used for the radial part of the local
orbital while a spherical narrmonic describes the angular Sihnvior.

6,4 F) = 7:"( & ef)?c_;”/i{; r3 2T (u22)

we usually toke the ,y' and 2

5 4

optimized basis sets have Leen computed for the atomic or lonic

from Pagus et al ( ) where

system approrriate to the solid irn question. In many cases, e

vill change this tasis set to cchieve localization, considering

L

at the same time the total energy of the subsystem,
The cxpansion coefficient C_“-l is solved by the matrix

method of Roothean ( ).
Equatior 3.21 is solved repeatedly until the self-

consistency is belci: some predetcrmined value, normally one vart

-6

in 10 for the charme density,.




~2 have only used the long-range rart of the cxternul potential
as the lecalizing potential. So, for lonic substances, the
electrostatic potential will he Screened while the shorf-range
effects of the inner shells will change the local orbitals, Some
enions will not localize in this situntion since it is the
Ladelurns vart of the potential that stabilizes them, Since A is
essentially arbistrary, vz are free to alter it in whatever vay
¢

that achleves optiral loucalization, and we often uvse— 52 Y, 5

/
in equstion 3.21 instend of *p, U s




Energy Zand Thneory

The Hertree-Fock energy hands sre obtained by nlotting
the one-electron erergies derived in equation 1,16 azainst the
crystsl momentum k. Our colculations make use of the symmetries
of the crystal, In the case of these cniculabions. it 13 the
zinc-blende crystal structure,

Rloch's theorem requires that the wavefunctions of the

solid satisly

[

. ,Ll-: o
T = - a (F) (2.1)
hi hE
where AL (F T /?) = (7")
rE K

for any lattice translation vector R. The crystsl momentum is
again ¥k and n is the tand index. VYavefunctions that satisfy
this condition are 3loch wavefunctions. -

If we lookx at the set of R , we can see that there
n

is an element of R that has a minimum length, corresponding to
n

the fundsmental lattice sracing., Conslidering this, and the fact

that 3 1is a group under translation, we can see that there is
n

& maxinum kK wnen we transform irnto momentum srace.,




(3

Tharafara, there {5 5 Cinite vezion of nanenquivaleat F-rojnts -
the first Zrillouin zone.This ray bte reduced to on ' irreducidle
wedge*' Ly syrr-etry conslderstions,

The solution to the inrtree-Fock equations ic lengthy
for crystals, und the successive approximation nature of the
calculations requires that the equstion be solved severul times.
The Hartres-Fock equatlo; can be rewritten in terms of the

Fock-Direc dansity ratrix( }:

-

[‘"V"'l; Z ,;- y fq_j' ?“ ”) ol ]9 iX)

) 4
_ij"f ‘f,f E )y’ = €. 6 k) (2.2)
cur«;‘nl
where pla,x ) = : L‘j(z)(j ‘ (2.3)

If a self-consistent density matrix is avallable, then
equation 2,2 need only be solved once to obtain the eigenvalues
and cigenfurnctions, fsdams ( ) and Gildbert( ) have shown that

thic density matrix (x,x') 1s the same for equations 2.2 and 3.21 .

plor) =Lapiewr  =Iia V' g (2.4)
~E 5‘ 7’ 2. "')73 )‘
So ¢ have the required density matrix, and can obtain
crystal wavefunctlions from the slready obtained local orbitals

by counstructlrzr the Fock operator and solving equation 3.21 just

once, The matrix sents ol ¥ ore calculated to first order in
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interatonic overlap , consistent with the calculaticn ol the
local orbitals,
The Rloch functions 9“7(5) are expanded in a basis set

in which the basis functions have the form

p< = 3Ty ci-R) (2.5)
. T 7 A
This linear copbination of basis functions technigue is similar
to the fanous linear combination of atoﬁic orbltals technigue
(LCAQ) except for the fact that the are not free-atom orbitals,
but are the local orbitals obtained nreviocusly. Note, the lacal
orbitals are occasionnlly ernriched for the case of virtual states,
The LOFAS progrem wlll not indicete basis functions appropriate
for a virtual state if that virtual state is of a different
angular momentum type than the occupied states; for instance,
a case in wnich the occupied states are 2ll s and p-like, while
the first virtual statz is d-like, In this case, basis states ”
for the virtuals are added, consisting of spherical harmonics
multiplied bty single STO's that are chosen’tc have small overlasp.
Since the crystsl momentur k is a good quantum number,

the Fock srace is diagonallzed into sevarate spaces for cach

reciprocal lattice vectcr, The intexrals necessary to perform




the cnlculation ard Li-lndepew it ond need enly bty rerformdd

once, iulticenter integretios iLs done by the Lowdin o{~function
exrension method ( )., One of the sites is chosen as center and
all functions are exranded in terms of sphexical harmonics centered
on that site, The calculgtions are performed using the programs
K3AND and KZOXE uwritten by Xunz, The output consistis of energies

and coefficlents of the besis functlons at 20 selected points

of the ¥rillouin zone,
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* Cerrelction Correctlons

As previously mentioned, Hartree-Fock theory does
not give exact solutions to the true many-electron Hamiltonian,
Since we are using a siaglc determinental wavefunction, electrons
are arfected only by the menn field, Electrons of the same spin
have sohe of thelr true pair interactions taken into account,
but there 1s no palr correlation at sll btween two electrons
of opposite spin, It is obvious that the Coulomd force between
two clectrons 1s indepsndent of spin, and should keep electrons
from the necar neignhborhood of any othex electron.

We say that the motion of clectrons ol opposite
spins is uncorrelated, and that electrons with like spins &re
incompletely correlated, The correlation energy is usually
defined as the diffexrence between the energy obtained from
our mean-field Hartree~Fock theory and the exact non-relativistic
energy of the system. This cxact energy could in principle be
determined by using a computatioral techniGue called configuration

interaction




>Jd
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In this irethod, a wavefunction is used that s a linear
combinntion of determinants. It's impractical foxr all but the
smallest imolecular and etomic systems, and is far too time-
consuming to be useful in solids,

For solids in genaral, and specifically in the case
of the II-VI compounds under dlscussioq. we attempt tc estimate
the correlatlion corrzction to the Hartree~Fock calculation. The
correlation cerrection For the cne-clectron eigenvalue is the
error from Koopmana' theorem ( ) sand from the indercndent
particle model,

hceording to Koopmans' theoren, an orbital eigenvalue
is approxinmately the difference beyween the Hartree-Fock energy
of the N-electron syster with the level occupied and the Hartree-
Fcek energy of the W-1 electron cystem with that same level

nnoccupled. These Hartree-Fock excitation energies are

0 (#) A=t)
£ = F - F (4.1)
Ak WE HE
for states that are occupied in the Hartree-Fock ground state
. '__rA/n} //V}
and £ o= f - £ (4.2)
wL " F M-

for virtual states of the Eartrece-Fock ground state,




when uwe attempt to improve the Hartree-rFock

aporoximation, we wish to keep the general band scheme, so

ta) — LAP)

— -

€
hi ) w
= g - Y (4.4)

" g

hu

where the eigenvalues are the cxact cigenvalues of the systenm,

We assume that the correlation energles are a szall perturtation

(L)

of the originel Hartree~Fock tands, and we can then write E us

(L) (L) (L)
E =FE +F i (4.5)
REF ¢
(L)
here, E is the total correlation ~nergy of a system with L
c

clectrons. Equations 4.3 and 4.4 moy now be written as

0 (1) (1)
E -

e =& + ( E ) (4.6)
nk nk ¢ c

0 (n)  (i-1)
e =e +(E =~E ) (4.7)
nk nk c c

A useful approximation, valid for nonmetals with

valence band width lrss than the Hartree-Fock optical band gap,

»

vas developed by Fantelides et al ( ). They showed that equations

4,6 and L.7 may be replaced by
0 (N=1)

(4.8)

(4.9)




(¥)
In these cnuvations, , E , (e) 1s the sclf-cnergy of an clectron

nk
that occupics the one-electron Hariree-rFock stute nk in an

(N=1)
h=electron system, E (h) is the total energy change in the
nk

remaining N-1 eluctrons when the electron occupying the state in

guestion is removed, E(z-i) (h) is the sclf-energy of a hole.
n

Fantelides et al ( ) have produced some model-
independent results concerning these sell-energies. They find
that the self-energy of holes is always positive, and therefore
the valence bands {rom the original iHartree~Fock calculstion
alvays move up on the energy scole upcnh correlation, These self=-
cnersies grow as we approach the bottom of the valence tands, so
on talance the valence bands are narrowed, The sclf-energles of
the lower clectrons in the conduction band are negative, so the
conduction bands move down, The models used have only small
change in the amount of shift for the lew-~lying conduction ba;d.
and so e use a rigid downward shift {or these, ile end up
shifting the valence bands higher and rizidly dropring the

conduction btands. This rroduces a smaller optical gap than that

cutained vy the Hartree-Fock calculations,




We nore nearly apprcuch the exwarinental gap by this narrowing.
These sell-energies were first calculated by
Toyozawa ( ). The theory of this calculation, the electronic-
polaron method, was considerably further developed by 4. B. Kunz,
so that it now predicts hole sclf-energies as well,
In the originsl Hartrce-Fock theory particles respond
only to the average position of the other electrons and 1ons,
This is obvicusly incorrect, or at least incoiuplete; the
independent charge will polarize its suvrroundings, especlally 1if
those surroundings have sufficlent timne to respond, The electronic.
pclaron mcdel dresses the conduction band electrons and valence
band holes with quanta of the polarization field. These Guanta are

excitons., In the model we are using, the exclted states of the

(N)
crystal are simulated by a dispersionless band of excitons, E (e)
nk%
(N-1)
and E (h) are the interaction energies of a bare electron and

nk
hole with this field. Thesc energies are called polarizaticn

energlies, This model uses second-order pertarbation theory to

calculate the self-energies.




These polarization energles are calculated on the

basis of a model in which the hole or electron is fixed in space.
Tnls method, the Mott-Littleton method, uses a perturbative
approach to find the induced dipole roments on all ions of the
crystal due to the localized charges. This calculation takes into
account the rield {rom the induced dipoles - it is self-consistent.
Since it takes a finite time for the crystal to respond to such a
change, moving charges should induce less polerization than the
1nodel static charge. Therefore, this calculation should give an
vprer bound for the polarization energies of actual, mobile
clectrons and holes,

This electronic-polaron model is basically a long=
range scheme, Only in the limit of large distance can we find these
changes by assuming that they can be described by dipoles,

For short distances, the shape of the wavefunctions plays a m;Jor
role, and quadrupole and highexr multipole eflfects cannot ve

iznored. The changes in the central atom aad its near neighbors

certainly cannol be modeled by a dipole very successfully!
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Short-range correlation calculatcs the change of the
nearty orbitals when an eleztron is added or removed. To find these
corrections, we do simple atomic calculations of different
ionization states, supplemented by cluster calcilations in the case
of negative ions vhere the added electron extends over a significant
region of space, In.the limit of zero overlap between atoms, the
short range correlation correction tc the hole energy is

sr
E (h) = =£-E (4.10)
scf
where £ is the energy of the level the electron was removed from
and Es . is the Hartree-Fock lonization energy. The ionization
c

encxrgy 1s the dirference bvetween the Hartree-Fock energy of the
system with the level occupied and the iiartree-Fock energy with
that same level full, The short-range energies so calculated
are again upner bounds, since electrons and holes are not as
localized as this model potrays them.,

The Hartree-Fock calculation and the following
correlation correcti-ns give a set of one-electron energy tands,

They must now be compared to experiment to test the adequacy of

our anproximation,




CADKIUM SULFIDZ

At roon temperatur2 and standard rressure CdS
crystallizes in the zinc-blendz lattice with & lattice constant
of 5.818 angstroms (10,99 atomic units) and in the hexagonsal
form with lattice constants of 4,1348 and 6.7234 angstroms (
7.8136 and 12,7054 atonic units)., The zinc-blende rform, the
subject of these calculations, is composed of tuo interpenetrating

++ e
face-centered cublic sublattices occiried by Cd and S ions,
disploced relative to each other by 1/4 of the diagonal of the
unit cube, The symmetry properties of the zinc-blende lattice

2
( srace group T ) have teen discusscd by Parmenter (), and in
d

the followink discusslons of the tand structure, and notation of

Eouckaert, Smoluchowskli and wWigner ( ) will be used,




we first exsmine the energy states at the Prillouin
' 10
zone center, the point, Cadaium lons contribute a filled (44)
shell to the valence energy region, and sulfur ions contribute
2 6

a (3s) (3p) configuration. The p and d levels hybrldize to
some extent, since they are serarated by less than nine ev; still,
the valence bands are not stronzly hybridized. The top valence
band is predorminantly p-like { cver 75%) and the next lower band
is predominantly d-type, sgain over 75%. We expect the lowest
conduction btand to be derived frowm the cadmium 5s levels, as is
usval in cowkpounds that have any ionic character, In the zinc-
blende structure, the crystal Iield splits the fivefold degenerate
d levels into a triply degenerate state and a doubly degenerate

15

state. The tnreefold degenerate p states stay degenerate under
12 '

this crystal field and transforsm like 1 . The zinc-blende lattice
5 .

has no inversion symmetry, so the bands at the gamma point need
not have a definite parity. The conduction band contains

15
both p and 4 contributions, in fact.

Several previous calculations have been dcne. The valence

bands, especially the upper ones, and the lower conduction bands




tnve been well-dascrived by various pseudopotentisl calculstionc.
That s, they accord with current exreriment. However, Slnce
the pseudorotcential method 1s baslcally a paramctrization scheme,
in which the rarameters are determined by experiment, little
eritical new infermation cun be ohtained, If the exrperimental
evidence has been misunderstcod oxr misinternreted, the ot
pseuvdopotentiol will simply predict the mistnkes or misunder-
stendings that it sprang from. A nscudopotential ¢alculetion
is an aid to understanding, but it tends to not he falsifiadble.
Such calculations, such as those by Cohen and Rergstresser ( )
also depend on the validity of the cancellation thecorem, which
is not exact and which 1s much less valuable for systems tha§
have localized states that are closely comparablc in energy with
the valence states - he}e, the cadmium «( states are the ones
not casily described because of their local nature,

A related but more thecoretically rigorous technigue,
the orthogorialized plane wave method, has some of the same errors,

In this method, the valence and conduction states are described

by plune waves orthogonalized tc the core stetes, taken as constant.

1




In these previous (=4 caloulations, #s performed by Euwema and
Stukel ( ), E&wema and Collins et al ( ) and by Stukel et al ( )
there have been errors of up to three ev in the p-like valcnce
and conduction Ytands in compounds made of first-row atoms.
Also, the 4a states are misplaced by adbout a ryddberg - probabdbly
related to their core-like nature. The level ordering of the
cadriun 4d and the sulfur s bands see;s to be reversed fron
that measured by photoemission by about & ev., Altogather it

is easy to s2e that there is a need for a Tirst-principles
calculution that correctly predicts the major features of

the band structures of these raterials,

Therefnrs, the first all-clectron, self-consistent *°
nonempirical band calculation using nonlocal' exchange has been
performed on CdS., Tne emthods of calculation are as discussed
earlier in tihls work, It should be menti-ned that a Self-consistent
tand calculaticn has been performed by Zunger and Freeman ( )
using & locel density approximation for the exchange potential.
Thelr results, as well as earlier ones, will be discuséed in the

ensuing nagsas,

3
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volarizabllities listed Yy Tessran a6 gl ( ) were then uscd for

+ -~

cd and S Aalong with the ontical dislectric constant of 6,32
to caslculate the polarizstion erergies using the jott-Littleton

method. e obtalned values of 0.1366 ry end 0.2584 ry vere

obimined ns the polarizstion enersies assoclated with the S
++
and Cd haoles respectively. Zelins 1es§ tightly btound, the
sulfur anjons wolarize to 2 greetsor extent arcund a hole at the
+4
Cd cation site than do cadmiur lons around & sulfur hole,

nroducing a largexr polarization energy for the cation. We also

calculated short-range relaxation enexrglies for the states of

sy ==
intorest in the valence reglon; these axe E (S8 ) = 0.07824% ry,
3p
Sy == T Sr 44
E (S ) = 0,06302.»y, and E (€4 ) = 0,116 ry. These correcticns
s s

vere added to the Hamiltonlan matrix vhich was then rediagonalized
to give the correlated valence tands, Conduction bands were
computed by shifting the Hartree-Fock conduction bands by -.2;54 Ty,
the poliarization energy of a conduction tand electron on a

++
cd site,

Shown in figure 4.1 are the correlated energy bands

of CdS. The calculated nmand strncture shows cadmium sulfide to be

A/




Figure 4.1 Correlated energy tands of CdS for the normal

lattice constant of 5,181 angstroms ( 10.99% eu),
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a direct hand gap semiconductor with the gan st the gamma volnt.
This conclusion is in agrecment with the previous band calculations,

Three major non-overlapping regions constitute the valence bands

in this system. The S 3s derived tand lies 19 eV below the

velence band edge snd is about 1.4 eV wide. The next region

++
is primarily derived from the Cd id, and lies 12 eV below the

top of the valence bend, This band is about one ev wide. The
uppermost valence tand is nrimarily derived from S  3p levels,
and is sbout 3.9 eV wide. The lowest conduction band is s-like

++ ~--
and is derived from the ¢Cd 5s, S 3s and S U4s levels,

The band gap is found to be direct and equal to 7.1 eV,

The optical value of the gap , £ = 2,55 ¢V ( ), cbtalned from
[

experinent, 1s in serious disazgreeizent, Thz correlation model
here used,.the clectronic-rolaron medel and it limit,
Hott~-Littleton theory, is adapted to insulators and ignores )
short-range polarization effects, Such effects should be sisll
in atoms and in systems where the local orbitals are only slightly

perturbe:d from the frze atom or ion, but in polar semiconductors

such &s Cdf , there 1s no guarantee that the local orbltals are
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Figure 4,2 Density of states of CdS
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Figure 4,3 XPS spectrum for CAS according to Ley et al ( ).

IA and I describe fine structure of the highest valence-band
1 2

pesk. 8 1S a shoulder on the hign-binding side of this peak,
1

II reprcsents the sz2cond valence-band peak.
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that similaur to the free ilons, In thls class of conpounds, there
is substantinl charge density in the internucleor reglon.
1t nos been argued that such effects sct to narrow the band sav.
The density of statesiror C4S as calculated from the
original band structure calculation is given in figurec 4,2, For
comparison, figure 4.3 fhuws the corrected XFS spectrum obtained
by Ley et al ( ). The experimental cvidence clearly shows the
two peaks in the density of states of the uppex valence band.
The positions of these peaks are also in reasonable agrecment
with experiment. The upper peak lies 1.6 eV belox the top of
the valence bvand by Ley's measurements, while ou' calculation
gives a peak at approximately 1.4 eV, Experimentally, the second
peak is at 4.1 eV, while this calculation has a peak at 5.4 eV,
It also seems possible éo identify the shouldexr of the upper peak.
From our band calculation, this shoglder secns to be at about.
2.5 eV, vwhile Ley"s measurements put it at 2.1 eV,
The positlon of the d-like levels is also correctly
predicted In these cnlculatiens. These levels, prinmarily formed

from cadmium %#d states, are found to veak at 9:54 ¢V below

the top of the valence band experimentazllly, according to Ley.




Figure 4.4 Joint density of states of CdS
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Figure 4.5 Imaginary part of the dielectric constant of CdS
( this calculation)
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Figure 4,6 Experimentally derived imaginary part of dielectric
constant in €4S, from Cardona et al ( ).

Dexrived from ultraviolet reflection measurements.
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Cur calculmtion gives a value of 10.7 eV below the %fop of the
valence boand, in very good agreemsent with experinent. Thls is

in sharp cont}ast with previous pseudopotential and OPW
calculations, which misplaced this band as much as 12 eV below
its actual position, It should be mentioned that Ley's
photoemission studies were done on CdS in the hexsgonal form,

but since the first two shells around the central stom are
jdentical. in the hexagonal and zinc-blende structure, the atonm

is exnosed to a very similar potential, and no substantial change
in the density of states is expected.

In figure 4.4 the joint density of states as calculated
fron cur hand structure is shown., In figure 4.5, the imaginary
rart of the dielectric function is calculated from the same
theore?ical band structure, In figure 4.6, Cardona et al extract
the imaginery part of the dielectric constant from ultraviolet
reflection measurements on zinc-blende CdS ( ). There is clear
quallitative agreement, especially with the central peak and the
two sub-neaks approximately 3 and 5 eV above that central peak.
The tall below the central pesk in energy is exaggerated due to

the overestimate of the band gap in our calculations.




‘fo sum up: these calculations correctly predict the
ra jor features of the energy btands in CdS, as dectermined frem
optical and other measurements. Insofar, this first all-electron,
sell-consistent non-empirical method has succeceded. The d-like
levels are correctly predicted, as wa; rot the cace with earlier
calculations. Nothing in the pure bulk energy bénds suzgests
an explanation of the anomalous diamagnetism, and it would seem
that the effect 1s not an intrinsic one, It may be hoped that
this better understandinz of the electronic structure cf the
nure solld willl aid in the understanding of the anomalous
diarmagnetic state, perhaps by acting as necessary first step in

the exenination of the properties of defects and impurities in

cadnmivm sulfide,
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ZINC OXIDE

At room temperature and standard pressure Zn0

crystallizes in the hexagonal ( wurtzite) form with lattlce constants
of 3,249 angstroms (6.480 atomic units) and 5.193 angstroms (9,324
atomic units). The zinc-blende form with identical nearest-neighbor
distance has a lattice constant of 4,595 angstroms (3,634 atomic
units) and is the subject of thes2 calculations. It is composed of
two interpenetrating face-centered cublic sublattices occupled by
+4 ——
Zn snd O ions, displaced relative to each other by 1/4 of the
diagonal of the unit cube,
We begin again by examining the energy stetes at th;
10

Brillouin zone center, Zinc ions contribute a filled (34)

_ shell to the valence energy region, and oxygen ions contribute a

2 6

(2s) (2p) configuration. In this crystal structure, the threefold

degenerate p states stay degenerate and transform like’ .

15




The crysta. Tleld splits the fivefold degenerate dlevels into a
triply degenerate '15 state and a doubly degerarate flz state,
The zinc 3d levels and the oxygen 2p levels lie quite close,
and this calculaticn snows snows all eignt valense btands lying
within a five ¢V region. The zinc-blende lattice hes no inversion
symmetry, So the bands at the gamma point rneed not have any
definite parity. This calculation shows that this upper valence
region cxhibits strong p-d nybridization. The band lying
veneath this upper valence region lies nearly 24 eV below the
top of the valence band, and is primarily derived from oxygen
2s states..

In general, in ionic compounds such as Zn0 we would expect
the lowest conduction band to be primarily formed from the
zinc U4s level. The actusl calculation shows that although the
zinc Ls states play a major role, oxygen 2s and 3s states actually
play a larvger role in this first conduction tand. The next.
conduction.-tand;- triply degenerate at the ~one center, are formed
almost entirely from zinc lUp states .'This is suggested merely

by couraring zinc with its successor in the reriodic table, gallium.

3
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Several previous calculations have been nerforied on
zinc oxide, Attempts using local pseudopotential theory, such as
those by Rossler ( ) and Bloom and Ortenburger ( ) have not
been entirely successful, Since the pseudovotential theory deperds
upon a cancellation cr‘the strong core part of the potential by
the usual requirement that the valence electrons be orthogonal
to the core electruns, first-rov elements dould seem to be
unsuitable for this anproach, The voint is that valence p-states
for first row elements are not required to be orthogonal to any
p-core states, Investigators have attempted to alleviate this
protlem by empirical adjustments to the pseudopotentisls, but
it hesn't vorked well. When nonlocal pseudopotnantlals were used,

as in the calculations of Chelikowsky ( ), a better agreement
with experiment.is achieved., :Even so, much of the value of the
pseudopotential approach is lost, There is not the ssme confidence
thot the pseudopotential will retain its preditctive nowers in
different compounds, because the physical rationsle is weakened.
The modified and nonlocal calculations still suffer from all the

original weakness of pseudopotentials: reliance on experiment.

11
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Therefore, ue perform an sll-electron, sGelf-conslstont
nonempirical band cnlculstion on ZnCG. The methods of caliulatlon
are the same as used previously on CdS.

The calculation was begun by ceiculsing local orbitals
{er zinc oxide with the normsl lattice ronstant, The zinc and
oxygen basis sets of Fagus et al ( ) were vsed and vere modified
for this calculation, Two additional dirfu;e ST0s were added to the
S basis on zinc, The results of the local orbitals calculation
are listed in tables 5.1 and 5.2 for zinc and oxygen ions,
reseactively.

Hartree-~Fock bands were calculated fox 20 k points
in the irreducinle vedee of the Brillouin zone, The usual
exagcerated band gap apnears; we proceed to apply the correlation
methods previously discussed.

Polarizabilities listed by Tessman et al ( ) were then

+4 -
used Tor Zn end O along with the optical dielectric constant
ef 4.036 to calculate the polarization energies using the iFott-
Littleton method, e ohtained values of 0.2172 ry and 0,23564 ry

- ++
as the nolarizatlon energles associated with the © and Zn

heles resnectively, YWe also colculated short-range relaxation




Figure 5.1 Correlated energy bands of ZnC for the normal

lattice constant of L,595 anugstroms ( 8.634 au),
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enercies for the state of interest in the valence regieon: this }f
ST 4+ . ‘

48 E (Zn ) = 0.31472 ry. These corrcctions were added to the

d
¥amiltonisn nmatrix which was then rediagonallzed to give ..
correlated valence bands., Conduction tands were computed by shifting
the Hartree'Fock conduction bands by -.2864 ry, the volarization

++

etierzy of a conduction band electron on & Zn  site,

Shown in figure 5,1 are the correlated energy bands
of 2nQ. The calculated band structure shows zinc oxide %o be
a direct tand gan semiconductor with the gap at the gamma point.
This conclusion 1is in agreement with previous band calculations.
Two s jor non-overlapping regilons constitute the valence bands in
this system, The highest region is about 4 eV in width, and is
divided into two subreglions with almost nor overlap. The higher
gnd wider of these subreglions is , approximately 3 eV in width,

-~ ++
is composed of 0 2p and Zn 3d levels, while the lower subband

++
is almost dispersionless and )s of almost pure Zn 3d chasracter.
The lowest valence band is sbout 2.3 eV in width and is composed
- ++
of O 2p and Zn 34 levels,

Tre band gap i1s found tc te direct and equal to 10.86 ev,

Since the gap is experimentally found to be 3.3 eV, it must be




Figure 5,2 Density of states of 2Zn0
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Figure 5.] Corrected XFS spectrum for Zn0 sccording to Ley et a8l
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that the conduction band structure here pradicted s sexiosuuly
in exrror. ?reviously mentioned potential problems in ovuvx corralation
model ray exnlsin this discrerancy, but it seems most likely that
there is some flau in the estimate of the polarization energlcs.
The densibty of states for Zn0 as calculated from our
tand structure is given in figure 5.2. For comparison, figure 5.3
shows the corrected experimental density of states, derived
from x-ray photoemission experiments conducted by Ley et al ( ).
The d-like levels hsve been subtracted cut from the exnerinental
datn, since they dominate the spectra. The double peak in the
density of states of the uppermost band is clearly shown in
experinment and in our calculation. The d-like levels in our

calculation have some structure, are not smoothed into a single

.peak as in the experiment. The experimental peak is centered

-

C. ~
" 8,81 eV below the top of the valence band, according to Ley.

Cur d-complex is situated approximately 5 eV below the top,

but the qualitative plecture, that of a double-peaked valence

band with a very sharp d~band about 3 eV below, corresponds

closely with experiment,

o/ |




Our calculations alto give s nand derived from 0 2s
states (not shown on figure 5.2) centered srounli "4 o¥ bhelow
ths top of the valence band -~ thls corresponds to tiie owewy
peak in figure 5.3

In eddition, we have cslculated the joint densiiy of
states ( figure 5.4) and the imaginary part of the dieleci:ic

constent ( figure 5,5) for zinc oxide.
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Figure 5.§ Imaginary part of the dielectric constant of Zno
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CONCLUSIONS

We've used ab initlo Hartree-Fock theory, as well as
relaxation and polnrization correlation corrections to that theory,
to colculate the electronic tand structures of cadmiun sulfide and
zinc oxide. In the calculation of cadmium sulfide, hybridization
of the Cd++55. S--Bs and s-.hs is 8 major factor in the lovest
conduction btand. The calculation shows that CdS is a direct gap
semiconductor with a gap of 7.1 2V at the ganma voint. This tends

to show that the mechanism rroposed by Abrikosov to explain the
anoralous dlamagnetism origirally seen in CuCl ( and discredited
there by Weldman ( ) ) is not applicable to CdS, since it requires
a small indirect gap.
The calculated one-electron energy bands are compared

with the published optical data. The valence bands are in excellent

egrecment with photoemission end reflection data, and, in particular




76
the position of the d-like band is correctly predicted, in contrast
with previous calculations,

The cslculation for zinc oxide shows that there 1is
very significant mixing in the uoper valence tands tretween the

- ++

0 2p and 2n 3d levels, It seems clear that previous pseudopotential
calculations that could not correctly take into account the zinc
d levels were incarable of explaing the valence bands. The calculation
gives a tand gap of 1.0.86 ev, and predicts ZnO to be a direct gap
semiconductor with the gap at the gamma point. In the case of both
CdS and Zn0, it should be recalled that we are essentially Jjust solving
Dyson's equation, and that higher order dilagrams are quite capable
of accounting for the difference between the (exaggerated) gavs
fron our calculations and the measured experimental gaps. The fact
rerains that these calculations predict the valence structure;
the one electron bands for zinc oxide also accord well with published
optical experiments. Again, the position of the d-like bands is
correctly predicted.

The snomalous diamagnetism observed in CdS remains

unexplained, It seems to be an extrinsic phenomenon ,




The observation of ferromagnetism upon an applied

field, as Wwell as the anomalous diamagneticsm, is intriguing,
It suzcests that the rairing mechraism may favor a8 state with a
spin of one, as opposed to the Cooper pair, with a net spin of zero.
Each valr would have an intrinsic magnetic moment. This possibility
has been discussed for classical phonon-mediated superconductivity
by ¥. W. Anderson and P. Forel( ) but seems not to have been
observsd, except possibly at extremely low temperatures ( ),

An exciton-mediated pairing might well favor the l=1
or nigher state. The superfluid state in He 1s suggestive.

As yet the detalle of the interactions are not know,
altrnough 1t does seem that chemical impuritias vlay a role., It may
still be possible to test some of these 1deas by a phenomenolosxlcal
theory like the Ginzburg-Landau theory. One possibility secems
interesting: in the Ginzburg -lLandau theory, two characteristic
lengths appear, the coherence length and the penetration length.

In such a model revised for a p-wave system, a third length arises,
the characteristic length for the change in spin direction,

The two lengths of Ginzburg-Landau theory allow the

existence of a distinctive surface, which may have a lower energy




tran the bulk state, which leads to the interesting and

techriologically useful type II superconductors. This still exists

with three characteristiic léngths, but another effect. becomes possible,
A second surface layer is introduced; we may compare this to the

earth, with crust, mantle and core, If the mantle is energetically
favored, bubbles of a certain size would be energetically favored.
These suverconducting domains might explain the very high but finite
conductivity seen in the anomalous states of CuCl and €4S, and
alignment of these domains might explain the ferromagnetism seen

in C4S under nign applied field, At the moment, this is all speculation.

We awalt further experiments,
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Ab Initio Enersy Sands and Ionization Energies

for AlP, GaP, and GaAs
J. C. Becttger and A. Barry Kunz

Department of Physics and VNaterials Research Laboratory
University of Illinois at Urbana-Chanmpaign

Urbana, Iilinois 61801 U.S.A.

ABSTRACT

Energy bands and ionizatlon energies for clectrons in AlP, GaP, and
GuiAs are obtained using a new method proposed by Kunz, et gl.‘ The valence
bands and ionization energics obtained are found to be in good agrecment

with experiment. The conduction tands vary substantially from experiment.

'Finally, a method for obtaining better conduction hands is proposed.
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1. INTRODUCTION

A nevw ab initio method for obtaining correlated cnerpy bands was
recently proposed by Kunz, et 2l.! The nced for a new method becones
apparent when the inherent problems associated with current ab initio
methods are considered. Existing netho&s can be broken into two classes,
those which use the nonlocal FKartree-Fock (H-F) exchange potential and
thosc which usc some local density approximation to the excharge or
exchange-correlation potential. The former class of methods requires
calculations which arc both lengthy and complicated. Once such a H-F
calculation has been performed, there is still a need to obtain correlation
corrections. These corrections are poorly understood for covalent
semiconductors like the III-V ccmpounds. On the other hand, local density
approximation calculations give results vhich are highly dependent cn the
choice of the exchange-correlation potential. ﬁb single potential has been
found to give good results f{or all classes of compounds. For example,
Herman, et gl.z, found that in using both the Slater3 and the Kohn-Shan
exchange potentials for several seniconductors, the Slater potential agreed
more closely with experiment for II-VIX sehiconductors, while Kohn-Shan
exchange gaye better results for the III-V compounds. Even in cases where
4 given potential yields the correct valence and conduction band
structures, such caleculations have not aluays been able to place the core
levels in their correct locations relative to the valence bands. Finally,
local density calculations have not bheen successful in obtaining the
ionization energies for electrons in most compounds. Ve believe that many
of these difficulties are a result of using a hHartree potential which
includes a self-repulsicn term, on the assumption that the potential from

one electron in an infinite crystal will be regligible. As has beén shown




by Kunz, 23‘25'1» this ascumption is not correct in wmany cases and is =2
source of significant error for incsulators.

Tac new rmethod, which will be referred to as the Hartree-plus rethod,
uses the correct Hartrce potentizl, i.e. with the self-repulsion renoved,
along with a loc§1 exchange~-correlation potential. The Hartrce-plus method

was applied by Xunz, ct gl.‘, to the solid rare gases and NaCl yielding

bands which are in pood agreement with both experiment and previous H-F
plus correlation calculations. Tne III-V semiconductors provide a good
test of the range of applicability for the Hartrec-plus rethod since they
arc wide band semiconductors, as opposed to the rare gases and NaCl which
are narrow band insulators.

In Sec.2, H-F theory is developed and correlation is discussed. The
Bartree-plus theory and details of the calculations are presented in Sec.3
and Sce.dt respectively. In Sec.5, the results of Hurtree-plus bané
calculations for AlP, GaP, and GaAs are presented and compared to
experirent and previous theorctical calculations.

2. BASIC THEORY

The system of interest contains n electrons and N nuclei. Using the

Born-Oppenheimer approximation?, arnd reglecting relativistic effects, the

Bamiltonian is:

v ”n

) B U .

H" = Z £ +4 Z iy (1)
vnere: v
= -7 - = =X

#iF -0 23.'-;' 1% - Rl

R 2

. 99 % "5l

The energy is in Rydbergs, e2=2, uppercase letters refer to nuclei,

lovercase letters denote electrons, and the prime on the sum indicates that

the self-repulsion term, i=j, is excluded. The problen now is to solve the




Schrodinger equation:

BB (T Ra) = B 507, (2)
where % is the exact n-electron wavefunction for the ith excited state,
and the 3} are taken to include both space and spin coo}dinates.

To simplify this problen, we approximate the exact wavefunction ’7?'”
with a single Slater determinant formed from a set of onc-electron
orbitals, (Qi(fh)), iz1,°**,n and j=1,°**,n:

N R) = (11) B el 4 RN
The expectation value of H’, for the trial function 4, will be a
rigorous upper bound to the exact ground state cnergy if the resulting
energy Eé“” is stable against variation in the ;5i. Performing such a

variation, subject to the constraint that the ﬁi be orthonormal, yields an
equation for the #y:
Feix) = Z Mij 3)
where F is the Fock operator:
F=f+(dx, 202 [P = P %) Pl2,1)7] (3)
PRTR)= Z, & RIGNR)
P(z,:)qﬁ,(fr‘.) = & (%)

In eq.(3), P(2,1) is an exchange operator, the ¢E,¢I‘ may be used as
operators, and/D(fi,ié) is the Fock-Dirac density matrix. The second term
is known as the direct or Hartree term, and the last term is the exchange
term. lote that the prize is no longer necessary since the Hartree
self-energy is exactly cancelled by the self-exchange. Diagonalizing the
. matrix,hij gives the standard Hartree-Fock equation:

Féu(%) = €° B (%)) (4)

The eigenvalues of eq.(4) are given mearning by Koopmans' theorend .

Labelling occupied states with i=1,°**,n and virtual states with azn+l,
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the eigenvalues are:

ef = Flie— E;‘(»r-/.‘a $)

[

o _ pMpb)? _ ptel0
Ea“ 4 ]

where Eﬂ?'is the energy of the single Slater determinant approximation to
the total m~elgctron wavefunction obtained by adding or removing the octh
orbital to the n orbitals used to form the H-F ground state. Thus, &:° and
éf are the cnergics that an electron would have if its instantaneous
location were independent of the instantaneocus locations of the other
electrons, and if no relaxation were allowed. To improve on the H-F
eigenvalues vwhile retaining the independent orbitals, one defines

correlated cnergies by replacing the approximate energies in eq.(5) with

the exact energies:
€ = Epm"“ E:,(-v-l) (5 )

— g (W) ¢rr)
Ea = E;r "‘EO

The enerzies & and €« are quusiparticle excitation cnergies. The
quasiparticles associated with these energies are referred to as holes and
conduction electrons respectively.

There are two basic approaches to finding the quasiparticle energies.
The better understood of the two is the H-F plus correlation method, which
is essentially a perturbative approach. In this method, eq.(4) is solved
first, and then the correlation effects are added in as a small number of
corrections. This approach to obtaining correlated bands was reviewed and
developed in a formal way by Pantelicdes, et gl.7 The correlation
. eorrections are fairly well understood for both metals and narrow-band
wide-gap materials. Unfortunately the III-V compounds do not fall into
either of these classes. The other approach is to use an equation,

analogous to the H-F equation, which somehow incorporates correlation into
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the potential. This is the apprcach taken by the Hartree-plus method.
3. THE HARTREE~PLUS METHOD

In the past, band calculations wusing local exchange-correlation
potentials have solved an equation of the form:

Oup. $(5) = € 4:(X,) o)
where:
Osp. = 15+ Sl Xs Sz PR Fe) + Yee [P

is a single particle operator which replaces the nonlocal exchange in the
Fock operator with a function, V,, , of the local density./CKF). Unlike
the Fock operator, eq.(7) no longer has an exact cancellation of the
self-repulsion by a self-exchange. It has generally been asaumed that the
self-repulsion is negligible since it comes from one clectron in an
infinite crystal. This is in fact true for an electron in a totally
delocalized Bloch state. However, what is actually desired is the energy
required to add one quasiparticle to the ground state system. For 2all
insulators, and mz2ny semiconductors, these quasiparticle orbitals are
local. In this casc it is reasonable to work in thec local Heitler-London
representation. For such local orbitals, th; self-energy is not in fact
small and should be removed explicitly.

In the local representation, let @i (F) be the ith 1ocal orbital at

site 4. The corrected ﬁotential then is:

Ht=of + Vi (5) + Ve [p07)] (2)

where: +
V”ic;;,') = Sd-;a« (/17- /0()?:)?;-) - .{J‘:z @;,((};,)@‘”(&)

is the nonlocal Hartree potential. Althouga the Hartree potential is

nonlocal, the nonlocality is easy to deal with by using a single Hartree

potential for all orbitals of the form:

Vu (7)) = (diz 1= PR = 5 1 Bu > Z) (S.E) <l (7)
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vhere:
I s.E) = 2 (18 Z) 7 Gu(F))* 1R B | /7 %
Here the bra-ket notation is used to emphasize the operator nature of the
self-repulsion term,
For Vyo we have used the local exchange potential of Kohn-—Shmq and
the dielectric screening function of Robinson, Bassani, Knox, and

Schrierrcr(RBKS)a. Thus:

Yo [P0 T = Vi (7) FT5) Uo)
where:

We) = - ¢ [(F) o]

Floe)= 1 EaTane™l(E) vdet ™0 (11:2) = F o *[1 =5 < 2n (# 3)]
and:

o =.64E LLFIT™*

Although it might seem inconsistent not to remove the self-exchange in
eq.(11), onec can argue that the self-exchange will only be a significant
fraction of the total exchange potential in regions of low density where
F(<) approaches zero.
4. THE CALCULATTO!S

To calculate the Hartrece-plus bands shown in Figs. 1-3, we (first
performed an LCAO calculation using L-F atomic wavefunctions obtained by
Bagus, Gilbert, and Roothaan?, In this calculation lesbet's symmetry and
equivalence restrictions!0 were applied. Also, the crystal potential was
approximated by the first term of its expansion in Yy,, i.e. 1=0. The
. next term in the potential would be 1=3 and should not have a large effect
on the s, p, and d orbitals, which are all that are of interest here. The
potential and matrix elements are evaluated using 10 shells about the

central site. Ue represent the remainder of the crystal by a residual
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Madelung potential. To obtain tnis potentinl, we used effective charges
given by Phillips". This LCAO calculation can not. be expccted to give
good results for the conduction levels due to the use of Nesbet's
restriotions!?, The self-energies of the atomic orbitals have been removed
for both the occupied and the unoccupied parts of the orbitals., This means
that the conduction energies have been obtained as though the conducticn
electrons [elt the potential from n-1 electrons, instead of all n valence
electrons. 7To remedy this the self-energies are explicitly reinserted for
the virtual states. At this point the Hartree-plus ratrix is no longer
diagonal. However the coupling between the occupied and virtual states is
very weak and a second diagonalization produces new valence bands which,
for GaP, differ in enerpgy from the previous bands by at most 4%, Taking
all this into consideration, we believe that the final Hartree-plus
operator so obtaired is consistent with the configuration uscd. Finally we
form a Hartree-plus ratrix using atcmic orbitals for the core states and &9
planevaves for the ccnduction and valence states, and diagonalize it to
obtain the final band structure. For AlP, ve repeatcd this calculaticn
using 27, 51, and 65 planewaves.
5. RESULTS

In all the band calculations performed here, cnergy levels wvere
obtained at 21 nonequivalent points in the Brillouin zone for an f.c.c.
lattice. The bands are drawn along axes of high symmetry which connect the
points of high symmetry in the Brillouin :one. The symmetry labels used
_ are consistent with Parmenter'2, In all cases the origin has been chosen
to be the cation site. In addition, the orbitals and their energies are
superscripted to indicate whether they are valence (v) or conduction ({c)

states.
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The valence band strectures for A%, cbtained using 27, 51, 65, and 89
planewaves/ are summarized in Table 1. Yo experinmental or theoretical
values were available for comparison. The bands obtained with €9
plancwaves are shown in Fip.l. By couparing the results for several
numbers of planewaves, we can estimate the size of the errors due to
incomplete convergence., For the top two p-derived bands, our results
appear to be converged to within 0.1 ¢V. The third p-like band is
converged to within about 0.3 ¢V, and the separation of the =~band and the
p-bands is converged to within roughly 0.4 cV. On the otherhand, the basic
structure is stable, as is the width of the s-band. Ue assume that this
convergence information is also valid for our other caleculations.

In Tables 2a and 2b, the valence band structures for GaP and GaAs
shown in Figs.2 and 3 are compared to experiments and previous theorectical
calculaticns. It is particularly interesting to compare the Hartreec-plus
results with the two first principles OPY calcniations. For both GaP and
GaAs, the Hartree-plus method gives valence band widths which are in better
agreement with experiment than those obtained in the first principles OPU
calculations, and are comparable ir quality to the empirically adjusted
calculations, especially when the lack of convergence is taken into
consideraticn. All of the other calculations give better results than this
work for the separation of the s-band from the p-bands. This error ir the
Hartree-plus results, 1.0 to 2.0 eV, is probably due to incomplete

convergence and relaxation effects that have not been included. Nene of

- the other calculations listed give the position of the d-bands relative to

the top of the valence bands. For the Hartrece-plus results, we believe
that the errors in the d-bands, which are less than 15%, are a result of

relaxation effects, which would be expected to shift the d-bands up
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i relative to the top of the valence bands.
} In Table 2c, the ionization energies for the cation d-levels of GaP
1 and GaAs are compared to experimental values. This information is not
t given by any of the previous band calculations mentioned. The differences
between theory and experiment are easiiy accounted for by relaxation and
surface polarization effects.

In Table 3, the lowest transition energies are compared to experinrent.
Clearly the Hartree-plus conduction bands are in very poor agreement with
experirment. To test for errors in the treatment of the self-energies, we
performed a calculation for AlP with the self-encrgies set equal to zero.
Tnis calculation yiclded conduction bands which differ from those with
nonzero self-energy by no rore than 0.2 eV. ‘e therefore conclude that the
errors in the conductici bands are due to the choice of the
exchange~correlation potential, Vyoe It is not really surprising that our
choice of exchange-correlation potential gives good results for the valcnce
bands but not for the conduction bands. As was shoun by Pantelides, et
55.7, for both insulators and wide gap seniconductors, corrclation effects
in valence bands are a result of virtbal scattering of holes, while
correlation of the conduction bands comes primarily from virtual scattering
of electrons. Since the mechanisms for correlation in valence and

conduction bands are different, it is unreasonable to expect one

exchange-correlation potential to be valid for both cases. We suggest that

in future Hartree-plus calculations, it should be possible to obtain better

. results by using two separate potentials for the valence and conduction
states.

6. CONCLUSION

Based upon the results given by Kunz, et gl.’, for the rare gases arnd
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the results for III-V semiconductors reported here, we conclude that the
Hartree-plus rethod should give good results for the valence bands of both
insulators and scmiconductors when used with the RBXS screened Kohn-Shan
exchange. This nmethod not only gives good results for the valence band
widths, it also gives reasonable values for the corc d levels and the
ionization potentials. Based upon the calculations given, we suggest that
it night be possible to find a single exchange-correlation potential that
could be used to obtain good conduction bands for insulators and
seniconductors in a two-potential band calculation. Such a calculation
would use onc potential for valcnce states and a second poteatial for
conduction states. Tais type of calculation not only would be expscted to
give better Hartree-plus band structures, but would 2lso be more consistent

with what we know about correlation in semiconductors and insulators.
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CHAPTER 1

INTRODUCTION

The electronic structure of surfaces is important in many
scientific and technological fislds, such as corrosion, semiconductor
devices, and catalysis. lowever, the understanding of fundamental solid
surface properties has lagged behind the progress in understanding of
bulk properties. This situation has been a result of the lack of
experimental methods for the quantitative characterization of the
surface structure, and the theoretical complexities resulting from both
the loss of symmetry at the surface and any possible reconstruction
occuring at the surface. Recently developed experimental techniques
such as electron energy 1ioss spectroscopy (ELS) ( ), two photon
picosecond spectroscopy ( ), surface extended x-ray absorption fine
structure (EXAFS) (), and extended appearance potential fine
structure (EAPFS) ( ) have made accessible the experimental study of

the structural and electronic properties of real surfaces. The
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development of powerful computational methods has made possible the

theoretical study of these systems.

1.1 THE INITIAL ADSORPTION OF OXYGEN ONTO THE ALUMINUM (100) SURFACE

Aluminum surfaces oxidize readily upon exposure to molecular
oxygen. Several experirental studies have been performed on the initial
oxidation of aluminum surfaces ( ). Ultraviolet photoemission
spectroscopy (UPS) ( ) and Auger spectroscopy ( ) studies have been
reported for many crystal orientations of aluminum, including the (100)

surface. LEED ( ), EXAFS ( ), and EAPFS ( ) studies have been repor-ted.

Ultraviolet photoemission experiments ( ) have reported a valence
band resonance at 1.5 eV below the Fermi level for low oxygen exposure.
This resonance is attributed to the oxygen 2p band. The shift of the
aluminum 2p core level has alsc been measured for both low and high
oxygen exposures. This shift toward lower energy is due to the dipole
moment arising from the charge transfer from the aluminum substrate to
the adsorbed oxygen. York function measurements have also been reported
( ), with the work function found to decrease with increasing oxysen
exposure. This decrease has been interpreted as being a result of

incorporation of the electronegative oxygen adatoms beneath the alunminum

surface.
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LEZD, EXAFS, and EAFFS techniques are able to prabe the surface
gaormetry of the aluninum plus oxygen adsorbate systenm, and thus these
studies are of special interest as they will help to differentiate
betuween various theoretical models., For low oxygen coverage, the
reported Al-O bond length is 1.98 R ( ), in agreement with previous
theoretical calculations ( ). For higher exposures, a value of 1.88 A
is reported ( ), which correspondsto the nearest-neighbor distance in

For theoretical studies the (100) surface is ideal: calculated
electronic properties can be compared to existing Auger and UPS results,

and calculated bond positions and lengths can be compared with LEED,

EXAFS, and EAPFS results.

Lang and Williams (4) have studied theoretically the adsorption of
oxygen onto a jellium surface. While jellium is a good approximation to
bulk aluminum, it is not adequate to describe the local adsorption
process. For this reason, cluster studies, which are particularly well
suited to describe such local phenomena ( ), have been perforrmed.
Harris and Painter ( ) and Messmer and Salahub ( ), have studied the
adsorption of atomic oxygen onto the hole site of the Al (100) surface,
reporting electronic structures which agree with existing UPS data for
the initial adsorption of oxygen onto this alimunum surface. Studies of
the adsorption of oxygen at the remaining two high-symmetry sites of
this surface have not previously been reported. An accepted explanation
of the incorporation of oxygen atoms beneath the aluminum surface dces

not yet exist: the calculated electronie structure and binding
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potential curves for the on-top and bridge aitcs presented herc should

shed light on this problem.

In this study, the interaction between adsorbate atoms (in this
case oxygen) and the aluminum (100) surface i3 theoretically
investigated by modeling the surface with a small number of atoms and
then usiry the unrestricted Hartree-Fock approximation to calculate the
electronic structure and potential energy curves. From these poten’ial
energy curves the binding energy, bond distance, and force constants of
the interaction are deteririned. 7The calculated onc-electron orbitals
give added insight into the chemisorption process, and calculated
densities of states are compared with photoemission data. This
calculational procedure is able to accurately describe the localized
bonding of an adsorbate onto a surface site, the aspect of chemisorption

considered most important ( ).

The localized nature of the chemisorptive bond is indicated by
several kinds of experimental evidence. An adsorbed atom or molecule
can be observed to hop from one localized site to another ( ).
Infrared spectrouscopy studies have found that the vibrational spectra of
intermediates on surfaces are often very similar to the spectra of
isolated molecules ( ). These experimental results reinforce the
intuitive notion that the chemisorptive bond is similar in nature to the

familiar, localized chenical bond.
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In general, the loss of symmetry in the direction perpendicular to
the surface leads to the choice between two drastic approximations in
theoretically modeling the surface-adsorbate interaction. The
maintenance of translationil symmetry in the plane parallel to the
surface greatly simplifies the computational difficulties and allows for
the use of the oowerful methods developed for bulk band structure
calculations. The alternative approximation, simulating a small section
of the surface by a cluster of atoms, can more effectively describe the

localized interaction of the surface with a single aton.

Numerous calculations of the electronic structure of surfaces using
the approximation of a semi-infinite surface have been reported ( ).
The major drawback of this approuch is that, in general, a semi-infinite
monolaysr of adsorbed atoms nust be considered in a chemisorption
calculation. This limitation is a direct result of the syametry
assumed, and therefore only qualitative calculations can treat a single

adatom on a semi-infinite surface.

By relaxing the symmetry requirements of the semi-infinite surface,
one gains increased fle:ibility and freedom. For instance, atems can be
brought down over a variety of possible bonding sites. Rougliened and
stepped surfaces, exposed corners, and small particles, which
experimental work indicates are often sites favored for chemisorption,
can easily Dbe simulated by the cluster approach. Use of the
seni~infinite surface, by coatrast, is limited to studies of the perfect

surface.
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Once the appropriate cluster has been chosen to siculate the
surface, the electronic structure of the cluster-adsorbate syatem must
be calculated. The method used here is the unresatricted Hartree-Fock
approximation, from vhich electronic wavefunctions, electron energy
eigenfunctions, and the total electronic energy are calculated. This
calculation is repeated at varying adsorbate-surface separations, and
the potential energy curve can be generated from the differences in

total electronic energy.

The Hartree-Fcck approximation as the method of calculation {is
attractive due to two important advantages. The method is a convenient
first step towards an ab initio solution of the many-particle
Schrodinger equation for a fermion system, and gives a useful
zeroth~order wavefunction for a perturbation calculation of the
many-Lody problem. Second, it is the most advanced calculational method
in which elezentary physical intuition is applicable. In more complete
calculations, there is no longer a one-to-one correspondence between
particles and one-particle wavefunctions, and the independent particle

approximation is no longer applicable.

1.2 THE ELECTRONIC PROPERTIES OF THE SILICA SURFACE

The electronic structure of crystalline silica (Si0p) iz of
technological interest in, for example, the manufacture of solid state

electronic devices. Consequently, there has Dbeen considerable

it

Iy
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experimental effort in this arez. In a recent review of experimental
and theoretical results, Griscom ( ) has compiled much of the existing
data on the bullk propsrties of silica. The band gap has been found to
be about 8.9 eV, with a valence band width of approximately 11 eV.
Ultra-violet photo emission spectroscopy (UPS) studies by Ibach and Rowe
( J have detected no occupied surface states within the band gap.
¥illiams ( ) has studied silica surfaces grown on crystalline Si and
found traps at 2 eV below the bulk silica conducticn band edge. Thesn
traps act like Coulomb centers with a positive charge. It is with the

sili.. surface and its defects that the current Jinvestigation is

concerned.

Several recent experimental studies have lnvestigated surface
states of silica ( ). Schwidtal ( ) has found a radiation-induced
feature at 91 eV on the high-energy side of the Si L23 VV  (V=valence)
transition in the Auger electron spectrum ‘AES), and suggests that it is
dite to an Si L23 VD (D=zdefect) traznsition. He further suggests that
thic defect is the E; tenter, which is a dangling singly-occupied sp3
orbital of silicon. Ibach and FRowe ( ), Fujiwara and Ogata ( ),
Lieske and Hezel ( ), and Bearmudez and Ritz ( ) have measured electron
energy loss spectra (ELS) and found peaks in the second derivative
spectrum at about 3.5, 5.0, and 7.4 eV (Fig. 1). Ibach and Rowe have
attributed these transitions to a partially oxidized surface region,
Si0,, where 1¢x¢2. Fujiwara and Ogata ( ) have shown the states
associated with these transitions to be at the surface, and concluded

they were due to metastable SiO,. Lieske and Hezel ( ) have associated
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the final states with Si-Si bonds found in Si0,. lMost recently,
Bermudez and fitz ( ) have studicd this transition, and found the final
state to be due to "a chemically stable species formed after rupture of
the silica natwork,"™ and attributed these properties to a surface $5i=0
double btond. For this bond to exist, the silica surface nust undergo
reconstruction. Evidence for such reconstruction from low energy
electron diffraction (LEED) measurements i{s due to Janosay and Nenyhard
( ). Also, Hochstrasser and Antonini ( ) have observed what they
believe to be recombinaticn luminescence due to the rearranging of the
surface Si-0 bonds immediately after cleaving. They measured the

lifetime of this luminescence to be less than 10'5 aeconds.

Theoretical studies of the silica bulk electronic properties have
been perforned ( ), and the calculated densities of states are in
good agreement with cxperiment, except for the AES peak at 91 eV and the
ELS peaks at 3.3, 5.0, and 6.8 eV. Both of these discrepancies can be
accounted for by allowing for the existence of islands of silicon in the
bulk S5i0,. Bennett and Roth ( ) have calculated, using the Huckel
approximation, the electron - properties of many clusters whkich
approximate silica, and in particular gave attention to defects. Thesz
calculations wvere performed in the bulk; however, the clusters were
sufficiently small that they can be interpreted in terns of surface
defects, or in terms of a surface SiO, region. For oxygen deficient
clusters ulth a relaxation of the silicon atoms near the defect, the
calculated enargy levels showed transitions at approximately the same

energy values. These are, however, probably due to small clusters (2-3
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atoms) of silicon in the SiO,. Laughlin, et al. ( ), using a tight
binding method, have calculated similar defects and have also found
states which appear in the gap, at about 5 eV above the valence band
edge. They have also studied the E' center, and found a level lying
just below the bulk conduction band. Pollmann an. Pantelides ( ) have
performed a calculation using a Green's function formulation cn the
ideal terminated cubie ys-cristobalite) surface. Using an admittedly

crude mcdel for the surface, they found no states in the band gap.

The purpose of the current investigation is to study the silica
surface, giving particular attention to the three ELS peaks observed at
3.5, 5, and 7 ¢V. The cluster model is again employed, [for the same
reasons given in section 1.1, Of the thrce models proposed by
experimentalists to account for these transitions, the only one which
has previously been calculated theoretically is theSiOy model. In
chapter 4 are presented calculations of the one-electron energy levels
for the recsaining two models, the E; center, and the Si=0 surface

double bond. A comparison is then made between the three models and

experiment.
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METHOD OF CALCULATION

An exact solution to the wave equation for a large cluster of atoms
is not at present attainable. In fact, such a solution, while nice in a
mathenatical sense, would be difficult to interpret physically. The ab
initio Hartree-Fock theory provides an approximate method of solution to
deternine the electronic structure of a large cluster of atoms which is
both easily handled by contemporary computers and well suited for

straightforward interpretation.

2.1 HARTREE~FOCK THEORY

Ab initio Hartree-~Fock theory is used to calculate the electronic
wavefunctions and energies for the finite clusters studied in this work.
The solids studied contain atoms of 1low atomic number; therefore

relativistic effects are small and will be ignored. Using the

ng




Page 20 §

nonralativistic Schrodinger theory, the many~body wavefunction ‘I:, which
is a function of electronic and nuclear space-spin coordinates, is

datermined by the equation
[ L T - - iy B .i‘ . \
f’\t(f:,}:‘ "';:‘} :é (.!’:('(i, !:{".‘)‘u> (-&’./)

where H is the many~body Hamiltonian

Bz \b_ it ”m-} (:‘2‘)

with
vor - 2% g SRR
[N t "'l r. )
Iy,
Lot P &= S
oz- Zae T b g2 = (2.%)
) o 3’3‘ \@; "1‘
ey
. R
U+ P i':."-é‘:l

Here we have used atomic units, where h, Mme, and e=1, the unit of length
is the bohr (1 bohr:< 0.5294), and the energy is given in Hartree (1 Hy
%.27.2 eV). Upper case letters refer to nuclear properties: 'ﬁi is the
position of the I'M nucleus, and Mr is its mass. Lower case letters
refer to electronic properties: "?3 is the coordinate of the ith
electron. The four—vector'ii denotes both the spatial coordinates and

the spin of the ith electron.

The Schrodinger equation is simplified by employing the
Born~Oppenheimer approximation ( ) to separate the nuclear and

electronic coordinates. The total wavefunction is assumed to be
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separable:
- » ;=! o
s e
Y G L)z LAY EX) (2:4)
The nuclear wavefunction ?(§3. is now a solution of the equation

2:2";7%;: V;'r“bl\{‘&):ﬁﬂ)'(’) (“.‘

-
=3

2 e
while the electronic wavetunction,*?(iix). is a solution of the equation

ru(flu(‘hfjf) = £ (E) “((?,2) <_n_, )
' )

‘-

A solution of this electronic Schrodinger equation depends on the
-y
nuclear coordinates R and in turn defines a potential energy function of

the coordinates:

P
@)= ER)t2 —F =y (2.%)
=y K~ :‘\ ‘

¢
which determines the motion of the nuclei. The problem is now reduced

Hoe

to solving the electronic Schrodinger 2quation for a particular set of
nuclear coordinates. This equation cannot in general te solved exactly;
one therefore takes refuge in the jindanendent particle model for a

method of obtaining an approximate solution.

This approach is mathematically equivalent to a separation of
variables technique. The many-elnctron wavefunction, which is a
functional of the space-spin coordinates of all of the electrons, is
assumed to be a product of orbitals which are functions of one-electron
space-spin coordinates. However, the Pauli principle requires that the
many-electron wavefunction be antisymmetric under the exchange of any
two electrons. Therefore, the total electronic wavefunction is

approximated by an antisymmetrized product of one-electron orbitals:
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({, (Al 33&1""‘(1-) = ﬁ (‘l 'Pu “0 ‘T‘;(x,‘) “t a (l’,,), (249>

where G.ia the antisymmetrizer. Since the Schrodinger equation is still
not in general solvable analytically, the variational principle is
introduced to obtain approximate solutions. The variational principle
states that the normalized expectation valus of the Hamiltonian using
approximate wavefunctions is a rigorous upper bound to the exact energy.
The approximate wavefunction can then be varied to minimize the energy
and thereby be the best approximation to the exact wavefunction.
Applying the variational principle to the electronic Schrddinger
equation, and using an antisymmetrized product of one-electron orbitals,

we obtain the Hartree-Fock ejquations:

1

Faian=2 4, ¢,
b} b

whe-e F is the Fock operator. (" [ 4 (;‘)[ ,
.-\ -
l = TR Ne
(z)'l-.-:: WA ...,1(_ lF ]é
B
l:ﬁ(F,

-

The matrix elements Xij are Lagrange multipliers, and have been
introduced to insure the orthonormality of the one-electron orbitals.
In general, 2 unitary transformation can be performed on the orbital
space which diagonalizes this matrix. The Hartree-Fock equations can

then be written in the standard form:
1= N . e
Mg ¢’)= 5 §0) (;-‘JI)

These integro-differential equations are normally solved via arn
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iterative procedure. Thus, the electron orbitals are determined in the
average field of all the other electrons. The only constraints imposed
on the wavefunction are that the orbitals be orthonormal and be
functions of the space-spin coordinates of only one electron. This
level of approximation is called generalized Hartree-Fock (GHF) and has
yet to be solved, so further constraints are imposed to simplify the
calculation. The simplest constraint which can be imposed is to require

that the orbitals be eigenfunctions of S;, i.e., the orbitals be of the

form:
(t n&fP) .
@((;7 = f . (QJL)
\ q‘l/’ (()(;

where ffr) is the spatial part of the orbital, and «/ and {r are the
spin-up and spin-down cigenfunctions of S,, respectively. The form of
the Hartree-Fock equations is unaffected by this constraint, and this
level of approximation is known as the unrestricted Hartree-Fock (UHF).
The UHF method has been used for numercus practical calculations of

atoms, molecules, and solids ( ), and is the method used in this

study.

Additional restrictions may be placed upon the one-electron
orbitals in order to further simplify the calculations. The spatial
parts of the orbitals may be required to be symmetry eigenfunctions of
the cluster under consideration, i.e., each orbital must transform as an
irreducible representation of the space group of the cluster. Finally,
for doubly occupied orbitals the spin-up and spin-down spatial orbitals

may be assumed to be equivalent. This level of approximatinn is called
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the restricted Hartree-Fock method (RHF). One advantage of RHF is that
the one-electron orbitals are eigenfunctions of both spatial syzmetry
and spin. However, for singly occubied orbitals complications arise in
that the Fock operator differs for opea and closed shells of the same
syzzetry, thus not allowing the single determinant to properly describe
the wavefunction. The UHF method, while not necessarily obtaining a
wavefunctinn which is an eigenfunction of spin and spatial symmetry,
does give a lower (i.e., better) eigenfunction of energy. Since the
"best" solution to equation 2.6 is the wavefunction which gives the
lowest energy, the UHF method has therefors been used in this

calculation.

2.2 CLUSTER MODEL

Localized phenomena in solids, such as point delects or surface
adsorbates, can be modeled effectively by using a finite cluster of
atoas ( ). Since the cluster is intended to represent a much larger
system, one wmust apply appropriate boundary conditions for the cluster
to simulate the effects of the environment. These have been discussed

by Xunz and Xlein ( ), and will be briefly revicwed here.

Tha solution to the Hartree-Fock equation (2.11) is sought for a
finite cluster. Suppose the region of the cluster is termed A, and the
rerainder of the system, the environment of A, is termed E. The problem
is to partition the system rigorously into a cluster and an environment.

Let us consider the method of local orbitals of Adams, Gilbert, and
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Kunz( ). Here the Fock operator, F, of the entire system is divided
into a part which includes the kinetic energy, nuclear attraction of the
electrons and nuclei inside A, along with the electron-electron
potential for the electrons assigned to A, Fy; and another part which

is the potential in A due to the environment, U,:

o~ s <
T = o F Ll;z <};AI:J

It is desired to study only part of the system, so instead of the normal
Hartree-Fock equation (2.11), consider instead the local orbitals

equation:
[?F ?d‘!‘ “‘F‘\.’/} (?\' = T Ri (—lw

where W is an arbltrary Hermitian operator. Consider now an jionic

systea. The potential due to the environment, U,, may be divided into

it

two partis: A is an ionic (Madelung) contribution and is long range,

and Vi is the remainder and is short range. Let W = Vi. Making use

of the projector properties of ‘0, (’f’,’ "‘?( y and solving for the occupied

orbitals, equation (2.14) becomes

4} N 13 -
”~ - . l
(e Thiema~tbpline (05

Considering vnly the orbitals of equation (2.15) which 1ie in A, the

solutions should penetrate only weakly into E. Because Vi does not

appreciably penetrate A, and because Vi 4 is cancelled by Vf i in the

limit of self-consistency, the approximate equation for the cluster,

including the interaction with the remainder of the system, is then
r
H hlY

’l_ f- * \.’3. X(F\ = q’i . (l'll)

ol
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This approxizate equation is aimply the equatlion for the wavefunction in
the cluster of interest imbedded in the Madelung field of the remainder
of the solid. The eigenvalues T of equation (2.14) or the approximate
equation (2.16) represcnt the eigenvalues £; of the infinite solid only

in the limit that the orbitals yy ure localized in the region A.

A basis function expansion is used to determine the unrestricted
Hartrea-Fock orbitals. Here gaussian type orbitals have been used for
this expansion. This type of Tunction offers the advantage of having
analytic solutions for the required integrals; however, .any such
functions are required to achieve the desired accuracy. Cartesian

gaussian functions have been used. The spatial part of these functions

has the fornm:

f J ; | 23 ST —l< r;.
v = Z o gleze !
J j.‘l\Q‘ g

The determination of the gaussian exponents, ’9- for atoms and fons has
been the subject of conaiderable study, and tabulated sets exist in the
literature. An all-electron calculation including the core electrons of
aluminum and silicon would be impractical, so the ab initio effective
potential of Topiol, et al. ( ) is used to replace these core
electrons. The integrals are performed using the standard POLYATOM
integrals progr: ., and the unrestricted Hartree-Fock calculations are

done with the G. T. Surratt program UHFONE.
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THE INITIAL ADSORPTION OF OXYGEN ONTO THE
ALUMINUM (100) SURFACE

Aluninun crystalizes in the FCC form, with a lattice constant of
4.05 £, Aluminum $3 a metal, and the bulk electronic strunture is
approximated very well iy the "jellium" model. However, attempts to
enploy this rmodel to describe the local chemisorption process (10) have
produced results which are not consistent with experiment (6). Cluster
techniques have been used to study the chemisorption process (11,12,40),

with results which agree well with experiment if care is taken in

choosing the cluster.

Chemisorption is a localized process, and as such the cluster model
should provide an accurate description. The difficulties that one
encounters here are resultant from the fact that aluminum is a metal,
and as such is not well described by a small cluster of atoms (fig.

3.1). One must, therefore, take intc account the size of the cluster
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used to describe the substrate. These effects will be discussed, along
with the binding energy of the oxygen atos for~ cach surface site
considered. Calculated one-electron ecnergy levsls for these binding

sites are compared with the results of photoemission experivenmts.

3.1 RESULTS OF CALCULATIONS

Tne positiona of the aluminum centars in the clusters are chozen to
reproduce the unreconstructed structure of the 2luainun (100) surface.
It has been assumed here that the lattice does not undergo siguifigant
distortions at the surface. Tnis has been shown to be trus froa
comparison of experimental and theoretical LEED studies of clean

aluninuam surfaces (l4).

As possible surface sites for the adsorbed oxygen atom, considered
here are the three high-symmetry points of the (100) surface (fig.
3.2). These are a position directly above an aluminum center of the
first substrate Jlayer (on-top position); the position central to four
aluminum atoms of the first layer, above a second layer atom (hole
position); and above (or below) the midpoint of a line connecting two

nearest neighbor aluminum centers (bridge position).

The interaction of oxygen with the aluminum surface at the on-top
position has been modeled here using two clusters: Al0, with a single

aluminum atom representing the surface; and Algo, with five first layer
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atons and four second layer atoms modeling the surface. The binding
energy of the oxygen atom to the aluminum surface is shown as a function
of ftz distunce above the surface in figure 3.3. For both surface
clusters, the equilibriun distance is about 3.5 bohr. The binding
energics differ betwaen the two clusters; this energy is 2.25 eV for
the AlO cluster, and 1.30 eV for the AlgO cluster. The charge transfer

from the alunminum surface to the oxygen atom is about 0.7 nlectron in

both cases.

For the hole site, the aluminum surface is modeled with two
Qlusters: Rlg0, which has four aluminum centers in the first surface
layer, and the central aluminum in the second layer; and Alg0, which is
the Al50 cluster, to which four additional second layer aluminum centers
are added. Tne importance of including the second layer atoms at this
site has beesn shown by previous thgoreticnl studies of the interaction
of oxygen with metal surfaces (45). The oxygen binding energies as a
function of the distance above the surface plane are shown for these
clusters in figure 3.4. Both clusters have a mninimun total energy
(maxinum binding energy) when the oxygen center is about 0.2 bohr below
the plane of the first surface laysr. The cluster with only one second
layer aluminum atom is found to bind the oxygen adsorbate by 5.4 eV,
with a charge transfer to the oxygen of 1.4 electrons. The larger
cluster is found to bind the oxygen by 4.8 eV, with a charge transfer of

1.3 electrons to thke adsorbed oxygen.
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The binding energies computed for this site, as well as those for
the bridge site, mu3t be carefully extracted from the calculated total
gnersles.  Slace the oxygen atom penetrates into the cluster of aluminum
centers, the  basis  functions used to describe the electronic
wzvefunction® assovniated with the oxygen adorbate may inprove the
description of the subshtrate electronic structure, thus lowering its
total encrzy. This improverent in the substrate wavefuncticn can he
integrated into the caculatior of the binding energy by simply including
the basis functions of thao oxygen atom when calculating thn total enargy

of the substrate cluster.

The bridge site has been modeled here with three different
clusters. ‘The [irst cluster consists of two nearest neighbor aluminum
centers of the sucface, and an oxygen aton above the midpoint of the
line connecting these centers. The second cluster contains these two
centers, as well as two additional centers beneath them from the second
aluminum layer. For tne final cluster, two aluminum centers from the
third layer are added. The inclusion of the deeper layer aluminum
centers at this bonding site is necessary because the oxygen atom
penetrates the surface, and can move vertically in a ‘"tunnel! between
pairs of aluminum centers (see fig. 3.2). Tne binding energies of an
oxygen atom interacting with these aluminum clusters are shown in figure
3.5. For the cluster with two aluminum centers, the oxygen adsorbate is
bound 1.3 bohr above the plane of the surface. A charge of 1.25
electrons is transfered to the oxygen atom, which is bound by 3.1 eV.

With the inclusion of the two second layer aluminum centers in the
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cluster, the equilibrium position of the oxygen center mcves to .65
bohr beneath the surface, which is just above halfway between the two
aluminum layers. The binding energy is found to be 3.8 eV, with a
charge transfer of 1.4 electrons to the oxygen. Inclusion of the third
aluminum  layer produces no signifigant change in these results;
however, this cluster does show that the oxygen center does not want to
move deeper into the bulk material, as the total energy of the system is

found to be lowest for an oxvgen center position just below the first

surface layer.

3.2 DISCUSSION OF RESULTS

For the initial stages of adsorption, the oxygen adsorbate is
clearly bound below the aluminum surface. The binding is strongest at
the hole site. An electric charge of about 1.35 electrons is also
transfered to the adsorbed oxygen. These results are in agreement with
previously reported work function studies, in which a reported decrease
in the work function of the aluminum surface witn increasing oxygen
exposure (up to one monolayer of coverage) has been attributed to the

penetration of negative oxygen ions beneath the aluminum surface (6).

The ultra-violet photoemission spectrum has been reported for low
oxygen coverage on the aluminum (100) surface (5); this spectrum is
shown in figure 3.6. Also shown is the projected density of states for

the oxygen adsorbate previously calculated by Messmer and Salahub (12)




Page J2 1

for an oxyzen position at the aluminum surface at the hole site. These
authors did not calculate the electronic structure for an oxygen
position below the surface, nor did they study the interaction of an
oxygen adsorbate with any of the other high-symnetry (100) surface

sites.

As reported elsewhere (!4C), the one-electron energy levels of this
calculation are in agreement with experiment and previocus theory. These
energy levels are shown in figure 3.6 for both the hole and bridge
sites, with the oxygen position corresponding to the minimum total
erergy for the cluster. For both sites, the encrgy levels reported here

are those of the larpgest cluster calcuiuted.

Pnotoemission experiments studying the aluminum core levels at low
oxygen exposures have been reported, with a reported shift in the
aluminum 2p energy of 1.3eV toward lower energy (5). In the present
calculation, the shift of the aluminm core levels is found to be 1.1 eV
in the same direction. Tne cause of this core 1level shift is the
electric dipole produced by the charge transfer from the aluminunm
substrate to the oxygen atom upon adsorption. It has been noted by
Flodstrom, et al. that the aluminum core level shift increases to a
value of 2.6 eV at higher oxygen exposure (about one monclayer of
coverage), thus lowering these orhital energies to the values found in
Alo03. Tnese results are evidence for a two stage oxidation process,

with the first step being chemisorption at the hole site, and the second

step being incorporation »f oxygen heneath the aluminum surface.
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The agreement between the calculated one-electron energies for the
hole site presented here, along with those of Messmer and Salahub, and
reported experimental UPS spectra tend to support the idea that the
initial chemisorption of oxygen occurs at the hole site, as one would

expect from the binding energies reported in section 3.1.

The hole site is also favored by extended appearance potential fine
structure (EAPFS) measurements. Using this technique, den Boer, et al.
(4) have reported a nearest neighbor oxygen-aluminum distance of 1.98 R,
or 3.74% bohr. Messmer and Salahub have reported a value of 2.02 £ (3.82
bohr), and the results of the calculations presented here place the
oxygen at 1.92 % (3.85 bohr) from the nearest aluminum center for the
hole site. For higher oxygen exposure, den Boeﬁ)gg al. have reported
an experimental value of this nearcst neighbor distance of 1.91 . Tis
figure is probably an average of the two nearest neighbor spacings found
in Aly03; these being 1.85 A (3.51 bohr) and 1.97 X (3.72 bohr). The
longer of these spacings corresponds to oxygen binding at the hole site,
while the shorter corresponds to oxygen adsorption at the slightly less
energetically favorable bridge site. Tne present calculation places the

nearest neighbor distance at the bridge site at 1.71 K, or 3.25 bohr.

The results presented above, along with previous theoretical and
experimental results, show that for the initial interaction of oxygen
with the aluminum (100) surface, chemisorption takes place at the hole
site. The present studies have extended previous theovetical
understanding of the interaction of oxygen with this surface to include

the two additional high-symetry (100) sites. Work function, UPS, and
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EAPFS studies nave reported that the naturc of this interactien changzes
when the oxygen coverage approaches one monolayer; the theorstjcal
results presented here lead ane to conclude that at this coverage,
oxygen begins to adsorb at the bridge site, since the cnargitically more
favorable hole sites are already occupied. The chemisorption of oxygen
at the bridge site allows for the incorporation of the oxygsn adatoms

beneath the aluminum surface at high levels of oxygen exposure, leading

to the formation of the oxide A1203.




THE ELECRONIC PROPERTIES OF THE SILICA SURFACE

Silica ccecurs in s3ix different crystalline forms, as well as the
amorphous form. All forms of SiO, are based on the SiOj tetrahedron,
and differ in the 35i-0-Si bonding angle. The crystalline form most
often studied experimentally is d-quartz, and it is this form which we
have used here. of-quartz is hexagonal in structure, with three Si0,

molecules in each unit cell. The Si-0-Si bond angle is Y,

The silica gurface may be described accurately using a cluster of a
small number of atoms. Indeed, calculations on the bulk material ( )
have used the cluster approach. To take into account the effect of the
neighboring bulk, appropriate boundary conditions are imposed, as has
been discussed in chapter 2. 1In the case of silica, the cluster is
embedded in a point charge array, with the charge transfer determined in
a self-consistent manner. This gives the proper electrostatic potential

in the region of the surface cluster, and also provides for charge
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neutrality. Previous calculations have cither employed a free space
termination, or imposed periodic boundary conditions which require

defects to be present in all unit cells of the crystal.

Tone clusters used here for the bulk calculations were an SiOy
tetrahedron, and an Si-0-Si molecule. Doth clusters were embedded in a
point charge a2rray of 3%3#3 unit cells in size. The calculations of the
surface were done using a cluster consisting of the surface silicon
atom, its two neighboring oxygen atoms, and the two adjacent silicon
atcns to [form two joined Si-0-Si molecules. This cluster was embedded
in a point charge array of 3#3¥2 unit cells. The position of the
surface silicon atom was adjustud in order to minimize the total energy.
An oxygen atom was then placed above the surface gsilicon in order to

study the surface bonding state.

The one-electron energy levels calculated for the bulk 8102 are in
good agreement with experiment and previous theory (fig. H4.1). %The
calculated band gap is 9.4 eV, as compared to 8.9 eV for experiment.
Tne valence band width is calculated to he 9.2 eV, while experimental
measurenents give about 11 eV. The oxygen 2s band is found at 30.3 eV
below the conduction band, while experiment places it 28 eV beloir. The
valence bands are found to be mostly oxygen 2p, with some silicon 3s and
3p character mnixed in. This is expected, and agrees with the charge
transfer of nearly one-half of an electron from each silicon to each of
I oxygen atoms, or a configuration of Siz+o‘, as determined by a
Mulliken population analysis. This agrees with the observation that

silica has both ionic and covalent properties.




Page] b

For the unreconstructed surface, the E; center is found to have 2
singly occupied energy level 1.7 eV above the top of the bulk valence
vand (rfig. u.2). Stephenson and Binkowski ( ) have observed, using
XPS, an occupied energy level at 0.75 eV above the bulk valence band
edge for samples cleaved in vacuum. They believed this level to be an
intrinsic feature of the bulk Si0Op. However, their sampling depth is
only about 30 A, so it is probable that this level is an E' center at or
near the surface ( ). The method of sample preparation which they have
used (grinding) could easily have caused these broken bonds to be formed
( ). It is energetically favorable for an oxygen atom to bind to this
surface silicon atom, with a binding energy of 5.1 eV, which is
considerably sreater than the 2.6 eV per oxygen atom necessary to
disscciate molecular oxygen. We shall now turn our attention to this

configuration, which is the Si=0 surface double bond.

The occupied one-electron energy levels of the surface state are
all below the top of the bulk valence band. This is consistent with
optical studies, which have found no occupied surface states in. the band
gap ( ). The lowering of the valence band can be attributed to the
0-5i-0 bond angle at the surface being greater than the perfect
tetrzhedral 109° angle. The bottom of the conduction band for the
surface is found to be 4.6 eV below the bulk conduction band edge. The
orcupied valence surface states can be described as bonding and
non-bonding states between the adsorbed oxygen and the surface silicon
atom (fig. #4.3a,b). Yhen a surface eléLtron is excited out of the

valence band, an anti-bonding orbital (fig. 4.3c) drops out of the
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conduction band and i3 singly occupied. Its energy lowers considerably
due to relaxation, and is found at 1.4 eV above the top of the bulk
valence band (fig. #4.2). The position of the oxygen atom is 0.1 a. u.
farther out from the surface silicon atom for this excited state,
relative to its ground state position. This energy difference is in
good agreement with Bermudez and Ritz ( ), and the transition from a
non-bonding to an anti-bonding orbital of the surface bond is as they
have described. The energy change associzted with this transition is
6.1 eV, which is in agreement with the experimental value of 5.0 eV if
correlation effects are considered. The 7.4 eV transition can be
understood in terms of valence band structure, with transitions Crom

levels in the bonding part of thc valence band to the same anti-bending

orbital.

It is noted that this model, the Si=0 surface bond, does not
predict the surface electronic transition at 3.5 eV that is seen in the
second derivative ELS spectra. It has been shown by Gallon and
Underwood ( ) that this peak is in fact an artifact of' the second
derivative modec of detection, and it is not seen in the non-derivative
ELS spectrum. They argue that the 3.5 eV peak is produced by the
overlap of the "wings" of the primary and the 5.0 eV peaks. The

calculations presented here agree with this interpretatian.

One remaining point of controversy is the difference between XPS
and UPS in discribing the top of the valerce bands of SiO, (fig. 4.4)
There exists at this time no agreement as to the cause of this

discrepancy. The calculations presented here do, however, favor one
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explaination. The two spectra are spatially sensitive to different
parts of the sample: XPS is sensitive to the bulk for initial states
with small binding energy, while UO.8 eV UPS is surface sensitive. In
toth the XPS and UPS techniques, the kinetic energy of the photoelectron
is sufficiently large that the final state may be approximated by a
plane wave. “herefore the difference between the XPS and the UPS
spectra must reflect the diff'erence between the bul% and surface valence
band densities of states. Comparison between the XPS spectrum and the
calculated bulk density of states, and between the UPS spectrum and the
calculated surfacc density of states (for the reconstructed surface)
shows that 3such an explanation does indeed account for the difference in

the two spectra (fig. H.4).

The reconstructed silicz surface has been studied in order to
determine the nature of the low cnergy loss ELS peaks. We have found
agreement between the theoretically calculated one-electron energy
levels presented here and previous experimental results. Of the three
models which can account for the peaks, namely a partly oxidized surface
region Si0,, the E; center, and the Si=0 double bond, we conclude that
the last is most 1likely. Support for this conclusion comes from
experimental evidence for reconstruction, and from the large binding

energy of the oxygen atom to the surface.

¢
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CONCLUSIONS

In this study, the ab initjo unrestricted hartree-Fock nethod has
been used to calculate the bulk and surface electronic structure of of
silica, and to study the initial interaction of oxygen with the aluminum
(100) surface. In both of these materials, the cluster model has been

shiown to be a wuseful tool in the caleculation of the electronic

structures.

In studying the interaction af oxygen with the aluminum (100)
surface, the size of the aluminum cluster used had a considerable effect
on the results. Since aluminum is a metal, a fairly large cluster of
atoms is needed to describe the substrate accurately. That the cluster
model worked at all for this calculation is due to the fact that

chemisorption is a local process.
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It has been shown that an oxygen adaorbate is bound rost strongly

at the hole site of the clean alunminunm aurface. Thne equilibrium
position of the adsorbed atom is about 0.2 bohr below the plane of the
supface. A charge of 1.3 electrons is tranafered from the aluminum
substrate to the oxygen adsorbate. ThiS charge transfer creates an
electric dipole which causes the aluminum core levels to be shiflted
downward in energy by 1.1 eV. Previous experiments studying the work
function, UPS spectrun, and the EAPFS have reported results for the
initial adsorpticn of oxygen onto this surface vhich are in agreement

with the results of the calculations presented here.

These experimental results have also shown that the nature of the
adaorption process changes at about one momolayer of coverage. The
theorctical studies reported here lead one to conclude that at this
coverage the energetically most [favored sites for chemisorption, the
hole sites, become fully occupied, and adsorption continues at the
bridge site. It is adsorption of oxygen at this site which allows for
incorporation of oxygen beneath the aluminum surface, and leads to the

formation of the oxide Aly03.

Also reported here is & study of the bulk and surface electronic
structure of silica (4-quartz). The cluster model was again used. The
tulk solid and the surface were both modeled with clusters of a few
atoms, plus the appropriate boundary conditions. In this case, the
boundary condition imposed was a point ion array to provide for charge

rneutrality and to provide the correct Madelung field.
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For the silica bulk, the calculated one-elcctron energy levels were
compared with experimental XPS spectra, and the agreement was found to
be excellent, as reported in chapter 4. For the reconstructed silica
surface, the structure of the Siz=0 double bond was found to be the
energetically most favorable surface configuration. The electronic
structure of this surface bond is able to explain the low energy ELS
peaks scen experimentally. Tnis caleculations reports a value of 6.1 eV
for the lowest energy transition, as compared to 5.0 eV for the

exparimental result.

Finally, the differcnce in the reported valence band structures as
measured in XPS and UPS experiments is explained. The XPS method is
sensitive to the bulk material, vhile UPS is surface sensitive.
Comparison of these spectra with the calculated valence band energy
levels shows good agreement between the theory presented here and the

experimenal spectra.

Tne ab initio unrestricted Hartree~Fock method, along with the
cluster rodel, has been shown to accurately describe the local
electronic properties of many systems. In this report, this method has
been shown to be successful in describing the adsorption of oxygen onto
the aluminum surface, and in describing the bulk and surface electronic
structure of SiOz. This technique has also been used to successfully
calculate the electronic structure of semiconducting polymers, including
defects and impurities (46), and in the description of the excitonic

structurce of crystalline silicon (47).
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